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TL;DR: Tests of simple models for the self capacitance of single-layer solenoid in-

ductors based on low-frequency capacitance or unloaded resonances using numerical

results from the Tesla Secondary Simulation Project’s Virtual Secondary Database.
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I. SETUP

Consider a solenoid arranged as shown in Fig. 1(a). Let the solenoid be a single layer

of wire reasonably close-wound around a cylindrical dielectric form that’s insulating and

non-magnetic. Let the solenoid be grounded at one end and connected in parallel with an

ideal lumped capacitive load Cload. What’s the lowest resonant frequency f1 of this setup,

say, if you were to excite it inductively or with an ideal signal generator?

The traditional approach to estimate f1 is to model the setup with the lumped-element

equivalent circuit shown in Fig. 1(b), which is known as the “classic” model of an inductor.1,2

For simplicity, let Rs = 0 and ignore any other sources of loss going forward. This series

RLC circuit then predicts resonance at a frequency

f1 =
1

2π
√
Ls(Cself + Cload)

(1)

given by an inductance Ls and a total capacitance that is the sum of Cload and a correction

Cself from the solenoid. By convention, Ls is the low-frequency inductance of the solenoid.

Empirically, it was discovered at least as early as 1911 that the self-capacitances Cself of

single-layer solenoids are practically constant for reasonably large Cload.
3 Surprisingly, there

is still no accepted analytical model for this empirical Cself, even after more than a century

of attention in the scientific and engineering literature.4 Today, this unresolved subject is

mostly an intriguingly stubborn curiosity, because numerical modeling can estimate f1 in

any important modern application. Nevertheless, it’s compelling to explore for fun.

This Note attempts to “demystify” Cself by exploring a few simple analytical models

for it using numerical results available in the Tesla Secondary Simulation Project’s Virtual

Secondary Database (TSSP’s VSD).5 The approach here does not attempt to derive Cself

from first principles, but instead connects it to other observables that can be measured

or numerically estimated. This approach circumvents a potentially important issue, which

is that the usual problem setup as outlined above isn’t fully specified: In practice, the

solenoid in Fig. 1(a) is perturbed by an undefined environment, including any leads. In a

transmission-line perspective, the solenoid is only one wire of a fundamental pair, and there

(a) (b)
H

Cload

Rs

Ls

Cself Cload
D

FIG. 1. Solenoid self-capacitance. (a) Physical setup of a grounded solenoid inductor with

a lumped capacitive load Cload. (b) Equivalent circuit intended only to determine the lowest

resonant frequency ω1 = 2πf1, which includes a “self-capacitance” Cself for the solenoid in addition

to resistance Rs and self-inductance Ls.
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are no explicit constraints for the second wire. While a full derivation would have to address

these details directly, the approach here approximately includes them indirectly through

their influence on the observables used as inputs.

Additionally, this Note explores the most widely used estimate for Cself, the Medhurst

empirical formula from 1947,6

CMedhurst =

(
0.1126

H

D
+ 0.08 + 0.27

√
D

H

)
D pF/cm, (2)

which is essentially synonymous with Cself. What’s particularly remarkable about this for-

mula and its longevity is that it implies the only important variables in practice are the

solenoid’s length (or height) H and diameter D. While its accuracy is not known (see

Appendix A), it seems to be widely regarded as trustworthy. There are no standard correc-

tions for the environment, dielectrics (including the coil form and wire insulation), or other

potentially relevant details, though estimates are available.7

II. SIMPLE MODELS

This section presents the two simplest models I’m aware of for Cself, along with some

variations. Each assumes we can compute Cself as the quasistatic capacitive energy stored

by the solenoid when it has an approximately linear voltage distribution. The first model

uses the uniform-voltage capacitance C0 as an observable, and the second model uses the

unloaded (Cload = 0) resonant frequencies f ′
ν along with Ls as observables. Both need a

correction to approximately include energy stored directly by the voltage gradient.

The justification for this assumption is that the value of Cself is supposed to be constant for

Cload ≫ Cself. In the lumped regime of Cload approaching infinity, the current in the solenoid

becomes very nearly spatially uniform, so the voltage V (x, t) at any position x ∈ [0, H] along

its length should vary approximately linearly, V (x, t) ≈ (x/H)Vs(t), at least for solenoids

that are not short (H ≳ D). Additionally, in this regime, some subtleties with nonuniqueness

of circuit parameters and misrepresentation of energy should be negligible, so we shouldn’t

have to worry about competing definitions of capacitance.8,13

However, the TSSP’s VSD entries do not satisfy Cload ≫ Cself. Nevertheless, the approach

here still applies because both its extracted values of Cself represent energy well, as we’ll see

below, and its entries are said to have approximately linear voltage profiles.5

A. Approach

Following the notation and conventions of Ref. 9, the stored energy can be modeled using

the distributed capacitances c(xn, xj) ≈ Cnj/h
2 = −Cnj/h

2 and c(xn) = −
∫ H

0
c(xn, y)dy ≈

Cn/h =
∑N

j=1Cnj/h, where Cnj is a mutual capacitance between the n-th and j-th turns

in a discrete network model of N turns, h = H/N is a uniform turn spacing, and C is the
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capacitance matrix of electrostatics. This leads to a theory definition of

Cself = −
∫ H

0

∫ H

0

c(x, y)⟨V (x, t)V (y, t)⟩dxdy
/〈

V (H, t)2
〉

(3)

(c.f., CU on p. 9 of Ref. 9), where brackets denote a time average. Approximating the voltage

as varying linearly gives an expression that separates into a sum of two terms,

Cself ≈ Clinear = −
∫ H

0

∫ H

0

c(x, y)
( x

H

)( y

H

)
dxdy (4)

=
1

H2

∫ H

0

c(x)x2dx (5)

+
1

2H2

∫ H

0

∫ H

0

c(x, y)(x− y)2dxdy. (6)

As discussed in Ref. 9, the first term (5) provides an approximate lower bound for Cself and

the second term (6) is a positive correction for excluded gradient energy that is expected to

be small for long solenoids.

The next two sections present estimates for the lower-bound term (5). To simplify things

as much as possible, both models assume a uniformly distributed capacitance

c(x) ≈ c =
1

H

∫ H

0

c(x)dx. (7)

The third section then presents an estimate for the gradient-energy term (6).

Before we continue, note that we could also estimate an upper bound for Cself as follows.

At first, it’s tempting to consider the uniform-voltage capacitance

C0 = −
∫ H

0

∫ H

0

c(x, y)dxdy =

∫ H

0

c(x)dx = cH (8)

as an upper bound, but this fails because c(x, y) is negative near the diagonal x ≈ y and

positive elsewhere.9 However, keeping only the diagonal contributions produces an upper

bound. This is clear rewriting (4) in a discrete network form following Ref. 9:

Clinear ≈ −
N∑

n=1

N∑
j=1

Cnj

(xn

H

)(xj

H

)
(9)

where xn = nh. Noting that Cnj is positive for n ̸= j but negative for n = j gives

Clinear ≈ −
N∑

n=1

N∑
j=1

Cnj

(
nj

N2

)
≤ −

N∑
n=1

Cnn

( n

N

)2
≤ −

N∑
n=1

Cnn =
N∑

n=1

Cnn. (10)

Each coefficient of capacity Cnn is the positive self-capacitance of the n-th turn when all other

turns are grounded. These capacitances could be estimated numerically9 or analytically10

to construct an approximate upper bound for Cself.
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B. Model using uniform capacitance (Miller self-capacitance)

The first model uses the uniform-voltage capacitance C0 of (8) as an observable, which

is experimentally and numerically accessible. Multiplying (5) by C0/C0 and using (8) to

rewrite C0 in the denominator gives the lower bound

Cself ≥
∫ H

0

c(x)(x/H)2dx =

∫ H

0
c(x)(x/H)2dx∫ H

0
c(x)dx

C0. (11)

For uniform c(x) = c, this lower bound evaluates to the remarkably simply result

CMiller =
1

3
C0. (12)

This model was presented at least as early as 1918 by J. M. Miller,11,12 the famous electrical

engineer after whom the “Miller capacitance” in amplifiers is named. I’ve called this the

Miller self-capacitance of a solenoid in three previous notes: Ref. 9 provides background and

an alternate version of the above derivation; Ref. 13 provides a detailed transmission-line

derivation of it; and Ref. 14 experimentally demonstrated it in controlled conditions.

For real solenoids, the shape of c(x) controls whether the Miller self-capacitance (12)

overestimates or underestimates the lower bound (11). This is because c(x) tends to resemble

a bathtub shape with sharp peaks near the edges at x = 0 and H, whose details depend

sensitively on the environment. Exploring shapes numerically, it seems reasonable to expect

CMiller to be a slight underestimate for a typical free solenoid with symmetric peaks [c(x) =

c(H−x)]. However, if the bottom end (x = 0) is near a ground plane, then the bottom peak

likely contributes significantly more (c.f. Fig. 3 of Ref. 15), which seems to make CMiller an

overestimate. Conversely, a dominant contribution from the top peak seems likely to make

CMiller an underestimate.

Note that the factor of 1/3 estimates how much energy is stored by a linear voltage

distribution compared to a uniform distribution. In principle, this factor could be improved

by replacing it with a function that gives the exact ratio of these energies, say as a function of

H and D for a free solenoid approximated as a cylinder with conductive endcaps. However,

you would still need to account for the environment, directly or indirectly. This refinement is

beyond the scope of this Note and its simple models, but might be worth future exploration.

Later, we’ll compare CMiller and CMedhurst using two standard theoretical C0 values,16

CButler =

{
2π2Dϵ0/ ln(16D/H) H/D ≲ 4

−2πHϵ0/[1 + ln(D/(4H))] H/D ≳ 4
(13)

CSmythe = ϵ0D
[
4.00 + 3.475(H/D)0.76

]
. (14)

These assume no dielectrics and no nearby conductors. CButler is the capacitance of a hollow

tube and should be widely applicable (Ref. 16 examined it for 1/4 < H/D < 200 and found a

worst error of about 4%). CSmythe is the capacitance of a solid right cylinder with conductive

endcaps and is meant only for 1/8 < H/D < 8.
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C. Model using unloaded resonant frequencies and Ls

The second model uses the unloaded (Cload = 0) resonant frequencies f ′
ν and Ls as

observables. Following the approach of Ref. 8 and assuming c(x) = c, the lower-bound term

(5) is equivalent to

Cfreq =
2

π4Ls

∞∑
ν=1

1

[(2ν − 1)f ′
ν ]

2
, (15)

where ν indexes the unloaded quarter-wave resonances with increasing frequency. I don’t

think I’ve seen this model, or its variations below, presented elsewhere.

The derivation of (15) follows from Ref. 8 after expanding a linear voltage spatial distri-

bution with a quarter-wave Fourier series,

V (x, t) =
( x

H

)
Vs(t) = Vs(t)

∞∑
ν=1

aν sin(kνx), (16)

where kν = (2ν− 1)π/(2H). The coefficients evaluate to aν = (−1)ν+1 8/[π(2ν− 1)]2. Using

this series, its orthogonality, and c(x) ≈ c, (5) becomes∫ H

0

c(x)(x/H)2dx =
∞∑
ν=1

∞∑
µ=1

aνaµ

∫ H

0

c(x) sin(kνx) sin(kµx)dx ≈
∞∑
ν=1

a2νC
U
ν (17)

where CU
ν = cH/2. Then, rewriting CU

ν = (CU
ν /Cν)(Ls/Lν)(LνCν)/Ls and using Cν/c =

Lν/l = 1/kν , Ls = lH, and LνCν = 1/(2πf ′
ν)

2 gives (15). Intuitively, this follows from

the unloaded resonances sampling c(x) ≈ c with different orthogonal basis functions for

the voltage, which lets us reconstruct a linear voltage distribution. It might be possible to

extend this approach to handle nonuniform c(x) using some knowledge of the actual voltage

and current spatial profiles during the resonances.

In practice, only the first or the first few frequencies fν are usually known. Partial sums

including only a few known terms, such as

Cf1 =
2

π4Ls

(
1

f ′
1
2

)
(18)

Cf123 =
2

π4Ls

(
1

f ′
1
2 +

1

9f ′
2
2 +

1

25f ′
3
2

)
(19)

that will be used later, are variations of (15) and also lower bounds for it. Roughly, these

should be decent models because the significance of the terms decrease rapidly: For a uniform

transmission line, f ′
ν = (2ν − 1)f ′

1. Using this to complete the sum, the fractional contribu-

tions of the first three terms are {0.9855, 0.0122, 0.0016, . . .}. Correcting for excluded terms

gives the additional variations

Cf1inf = 1.015Cf1 (20)

Cf123inf = 1.007Cf123, (21)



7

which show how little correction is expected for an ideal line. Solenoids are not ideal, of

course, so we’ll return to examine experimental data for fν near the end of this Note.

For real solenoids, and as discussed for CMiller above, the shape of c(x) controls whether

Cfreq or its variations overestimate or underestimate the lower bound (5). Roughly speak-

ing, though, Cfreq should likely be less sensitive than CMiller to this shape, because it uses a

quarter-wave sine series instead of uniform and parabolic weights to sample c(x). In partic-

ular, the dominant contribution comes from the fundamental resonance (ν = 1) that closely

resembles a linear voltage distribution.

Note that the factor of Ls in (15) cancels when using this model for Cself in (1), giving

f1 =
1

2π
√

LsCload + 2 π−4
∑∞

ν=1[(2ν − 1)f ′
ν ]

−2
≈ 1

2π
√

LsCload + 2(π2f ′
1)

−2
. (22)

D. Correcting for missing gradient energy

The first term (5) and the models given above that come from it neglect some energy

stored directly by voltage gradients captured in the second term (6). This is because they

are based on the distributed capacitance c(x) that assumes no gradient by construction.

For example, for a long solenoid with conductive endcaps, c(x) assumes there is no energy

stored by electric fields inside the solenoid interior. However, for a nearly linear voltage

distribution, the field in the interior would resemble that of an ideal parallel-plate capacitor,

clearly storing energy. Similarly, the fields outside the solenoid would be different than

assumed by c(x). All of these effects are captured by c(x, y) in (6).

Therefore, a crude underestimate for the missing gradient energy (6) is the energy stored

by an ideal parallel-plate capacitor filling the solenoid interior,

Cpp(ϵr) =
ϵrϵ0πD

2

4H
, (23)

where the relative permittivity ϵr accounts for the coil form or any other dielectrics in the

interior and ϵ0 is the vacuum permittivity. This capacitance can be added as a correction to

the models given above. (“Plus” indicates this in some plots.) As a correction, it should be

reasonable for long coils (H ≥ D) or coils with endcaps. It’s an underestimate because it

does not attempt to correct for gradient energy in the exterior. For more on this correction,

please see Ref. 9. Ref. 17 uses it to estimate a dispersion-relation parameter.

Later below we’ll explore this correction in comparisons of CMiller and CMedhurst using

theoretical values for C0. We’ll see that such gradient energy likely helps create the local

minimum observed in CMedhurst/D versus H/D near H/D ≈ 1. While the approach here is

crude, the detailed modeling in Ref. 18 adds a similar correction, the capacitance between two

rings representing the solenoid ends, to a sheath-helix model to explain this local minimum.

III. TSSP’S VIRTUAL SECONDARY DATABASE

The TSSP’s Virtual Secondary Database (VSD) contains the results of electromagnetic

simulations of a broad range of typical “secondary coil” arrangements for Tesla transformers
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(or Tesla coils). Each simulation modeled a single-layer solenoid suspended vertically above

a ground plane, with or without a toroidal top electrode (or topload). The database and its

documentation are available online in Ref. 5.

The VSD contains 13,578 entries formed by varying seven parameters: solenoid length

H ∈ [0.1, 3.179] m (16 values), solenoid diameterD (6 values of H/D ∈ [1, 10]), solenoid base

height B above the ground plane (units of H, 3 values), wire size (4 values), wire spacing (3

values), toroid outer diameter TD (units of H, 2 values or no toroid), and height TB of the

toroid central plane above the solenoid’s top (units of H, 2 values or no toroid). I’ve kept

the notation the same except for capitalization.

As best as I can tell, the VSD entries did not model any dielectrics such as coil forms.

A. Extracting C0, Cload, and Cself

The VSD provides nearly all parameters of interest, but does not explicitly provide the

main capacitances we need. This is the approach used here to to extract them:

For each “loaded” entry that includes a toroid electrode there is a corresponding “un-

loaded” entry that is identical except for having no electrode. Both entries contain a bulk

low-frequency capacitance Cdc. The value of Cdc from the unloaded entry provides an esti-

mate of

C0 ≈ Cdc(unloaded). (24)

The value of Cdc from the loaded entry is the capacitance of both the solenoid and electrode

as a single conductor. Together, these two values provide an estimate of

Cload ≈ Ctop = Cdc(loaded)− Cdc(unloaded) (25)

for the electrode of the loaded entry. (Many thanks to Paul Nicholson for suggesting this

approach.) Let’s call this quantity Ctop to flag that the separation of C0 and Ctop isn’t ideal.

That is, the proximity of the electrode to the solenoid likely perturbs the true value of C0

for the loaded entry away from the value of the unloaded entry. Thus, there is some slight

error expected in both C0 and Ctop when extracted this way. Relatedly, the VSD includes

capacitive coupling between the electrode and solenoid that’s assumed negligible in Fig. 1.

Note that the extracted values of Ctop generally differ significantly from the typical for-

mulas used for the electrostatic self-capacitance of isolated toroidal electrodes. Fig. 2 shows

that this is likely due to the ground plane and shielding by the solenoid.

Finally, we can estimate an effective Cself satisfying (1) for the loaded entry as

Cself ≈
1

Ldc[2πf1(loaded)]2
− Ctop (26)

where f1 is the calculated fundamental resonant frequency from the loaded entry and Ldc =

Ls is the low-frequency inductance from either entry. Again, this extracted value likely

inherits error from Ctop as discussed above.

This extraction succeeded for 10,827 pairs of loaded and unloaded entries in the VSD,

providing a dataset for the analysis below. For each solenoid and ground plane arrangement,

this dataset has four Ctop variations from the different combinations of TB and TD.
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FIG. 2. Ratio of the extracted capacitance Ctop of (25) for identical toroid electrodes at two

different heights TB above the solenoid. Raising the height generally decreases Ctop by up to

almost half, depending on H/D and the toroid diameter TD. The overlap of thousands of data

points covering all parametric variations gives the appearance of lines at each discrete value of

H/D used in the VSD. Data points for different TD overlap significantly at large H/D.

B. Applicability of Cself models

As warned above, at first glance it doesn’t seem like we can use the VSD to study Cself

because we’re not in the “Howe” regime: Fig. 3 shows that the loaded VSD entries do not

satisfy Cload ≈ Ctop ≫ Cself. Instead, Ctop < Cself. Additionally, the typical current spatial

profiles appear to be decently nonuniform.5

Fortunately, we may still proceed to test the simple models because the VSD satisfies

their assumptions outlined above. Fig. 3 shows that the extracted CSelf represents energy

reasonably well, and the typical voltage spatial profiles are said to be approximately linear.5

In other words, the VSD satisfies the assumptions capturing the “Howe” regime despite not

being in it, so the extracted Cself can be interpreted as if they were in that regime.
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FIG. 3. Exploring the applicability of Cself. (Top) Extracted Ctop versus Cself, showing Ctop < Cself

for all entries. (Left) Comparison of Cself and VSD energy-equivalent capacitance Cee showing that

Cself represents energy correctly for Vs(t) to within about 12% error.
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C. Comparing Cself with Medhurst

Remarkably, Fig. 4 shows that the extracted Cself are quite close to the Medhurst empirical

formula (2) – wow! Even with all its parametric variation, the spread in VSD data points at

each allowed value of H/D is rather small. This provides support for the Medhurst formula’s

implication that the most important variables in practice are H and D.

Such good agreement is a bit surprising because of differing environments: Medhurst

measured small solenoids of insulated wire wound around solid polystyrene rods and oriented

horizontally above a metal box (Twin-T impedance bridge). The VSD simulated ideal

solenoids with no dielectrics oriented vertically above a ground plane and with top electrodes.

Medhurst
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FIG. 4. Comparison of Cself with CMedhurst of (2). (Left) Conventional log-log plot of

capacitance/D versus H/D. The VSD values of Cself are within roughly [−30%, 20%] of CMedhurst.

(Right) Alternative plot of the ratio of values versus H/D, for direct comparison with later plots.

D. Comparing Cself with simple models

Fig. 5 compares the Miller self-capacitance (12) using C0 with Cself. For the two largest

solenoid heights B above the ground plane, CMiller is a decent underestimate of Cself. How-

ever, for the smallest height B, CMiller increases and switches between being a slight un-

derestimate at large H/D to being an overestimate at small H/D. This behavior seems

consistent with the ground plane leading (12) to overestimate (5), as discussed above. In-

cluding a gradient correction (23) slightly improves the agreement for small H/D for the two

larger heights B. Using a theoretical value (14) instead of the extracted C0 gives a slightly

worse underestimate that’s visually similar to the results with the two larger heights B.

Fig. 6 compares the frequency-based model (15) and its variations with Cself. Overall,

this model is a decent underestimate of Cself with less sensitivity to the environment than

CMiller, as forecast earlier. The difference between the variations are minimal, suggesting

that really only the first unloaded resonant frequency is needed for this method. Adding a

gradient correction improves the agreement for small H/D.
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FIG. 5. Tests of the Miller self-capacitance (12). (Top left) CMiller versusH/D for different solenoid

heights B above the ground plane. (Top right) Adding a gradient correction (23): CMillerPlus =

CMiller+Cpp(1). (Bottom left) Alternate plot of Cself/C0 versus B to compare with the ideal Miller

value of 1/3. (Bottom right) Comparison using a theoretical estimate (14) for C0.

IV. ADDITIONAL TESTS

A. Using theoretical capacitances

Fig. 7 compares the Miller self-capacitance using theoretical values of isolated tubes or

solid cylinders for C0 given above with CMedhurst. Generally, this leads to an underestimate

by almost a factor of 2. Adding a gradient correction (23) improves the agreement a bit, in a

way that suggests it contributes to the observed minimum, though note that this correction

isn’t intended for H < D. (The choice of ϵr ≈ 2.5 follows from Medhurst using solenoids

wound on polystyrene rods.) Some rough tests with a model from Ref. 15 for a tube above

a ground plane (not shown) suggest Medhurst’s Twin-T impedance bridge may also have

contributed to the minimum in the log-log plot.

B. Using experimental measurements

Fig. 8(left) shows partial sums of the frequency-based model (15) using experimental

resonance frequencies and inductances of typical Tesla transformer secondary coils (magnet



12

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

H / D

C
f1

/
C
se
lf

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

H / D

C
f1
P
lu
s
/
C
se
lf

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

H / D

C
f1
∞

/
C
se
lf

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

H / D

C
f1
23
P
lu
s
/
C
se
lf

FIG. 6. Tests of the frequency-based model (15) and its variations. (Top left) Using the first

resonant frequency with (18). (Top right) Adding the gradient correction Cpp(1) of (23). (Bottom

left) Using the first resonant frequency with (20), which has a slight correction. (Bottom right)

Using the first three resonant frequencies with (19), and adding the gradient correction Cpp(1).

wire wound on PVC pipe forms). One data set comes from Ref. 19, and the rest come from

values the TSSP used to test its software.5 Comparing with Fig. 4(left), this test slightly

underestimates both CMedhurst and the extracted VSD Cself.

Fig. 8(right) illustrates the convergence of the frequency-based model (15) using measured

resonances from Ref. 19. Note that this reference contains quarter- and half-wave resonances,

but only the quarter-wave resonances are used in (15). The sum converges to a slightly lower

value than the estimate (20) because of the typical curvature in solenoid dispersion relations.

CMedhurst evaluates to 9.66 ± 0.07 pF for this solenoid, propagating uncertainty in H and

D, so the model (18) underestimates CMedhurst by about 13%. Unfortunately, I do not have

a useful measurement of Cself from Ref. 14 that used the same solenoid.

Ref. 9 reports a measurement of C0 ≈ 22 ± 2 pF for the same solenoid as Refs. 14 and

19, which leads to a CMiller = 7.3± 0.7 pF. This underestimates CMedhurst by about 24%. A

gradient correction of Cpp(1) would add only about 0.12 pF.
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FIG. 7. Comparison of the Miller self-capacitance (12) and CMedhurst using the theoretical values

(13) or (14) for C0. (Left) Conventional log-log comparison using (14). The results are similar for

(13). (Right) Alternative linear plot of ratio.

V. DISCUSSION

All together, the simple models presented here worked surprisingly well with the TSSP’s

VSD. For as crude as they are, the models came reasonably close to the extracted values

of Cself, well within a factor of 2. In particular, the frequency-based model with a gradient

correction generally reproduced roughly 80% of Cself. The remaining discrepancy is likely a

combination of both model limitations (oversimplifications, neglecting gradient energy) and

error from extracting Ctop.

Given that Ctop < Cself for the VSD, it’s tempting to use the unloaded limit of a

uniform transmission-line model for Cself discussed in Refs. 13 and 14. This limit gives

Cself = (4/π2)C0, so naively predicts that both the Miller and frequency-based models should

reproduce Cself only up to (1/3)/(4/π2) ≈ 82%, rather close to what’s observed in Figs. 5
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FIG. 8. Tests of the frequency-based model (15) and its variations using experimental val-

ues. (Left) Using measurements provided in the TSSP’s online documentation5 and from Ref. 19

(“BHM”). For each solenoid, there are points for both (18) and a partial sum of (15) up to the

highest reported resonance. (Right) Sum convergence using measured frequencies from Ref. 19.
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and 6. However, the derivation of this unloaded limit isn’t fully justified for the VSD, so

this is likely just an interesting coincidence.

All together, I think these results paint the following rough picture: Figs. 5 and 6 suggest

that the majority of Cself comes from “external” capacitance [meaning, modeled by c(x) in

(5)] with a decent contribution (maybe, ∼ 20%?) from “internal” or “gradient” capacitance

[meaning, modeled by c(x, y) in (6)]. The additional tests with theoretical C0 in Fig. 7 seem

to suggest that, in practice, typical VSD environmental perturbations are a decent portion

(maybe, ∼ 25%?) of the external part of Cself. (Note that the VSD excluded dielectrics.)

The agreement of the VSD and the Medhurst formula adds support to that formula’s

implication that the most important variables in practice are H and D. It also provides

support for that formula’s longevity, including its long use by Tesla coil enthusiasts. However,

the VSD seems to show that Ctop generally doesn’t follow typical formulas for isolated

toroids. Therefore, there’s an opportunity to generate improved formulas using the VSD.

Please take all of this discussion with a grain of salt (or a healthy factor of 2, give

or take). To truly make confident assertions would require additional simulation and ex-

periments. Simulations with commercial or TSSP software would need to be in the right

regime (Cload ≫ Cself), to cleanly separate Cload from C0, and include typical dielectrics.

And, given how little data seems available, direct verification through experiments with real

solenoids or, perhaps, substitutes (e.g., resistive pipes that simulate linear voltage profiles)

in representative environments would be ideal.

Potential areas for future work include exploring the refinement mentioned in Section II B,

the upper bound in Section IIA, or better formulas (or measurement techniques) for Ctop. I’d

be very interested to learn whether the models presented here are practically useful with real

solenoids, such as Tesla secondary coils. For example, Figs. 6 and 8 suggests that Cf1 of (18)

might be a decent practical way to estimate Cself, and that it could be improved by artificially

inflating its value by about 22% or so (and optionally adding the gradient correction). That

is, measuring the lowest resonant frequency f ′
1 of the secondary in situ, while it is unloaded

(topload disconnected or removed), gives Cself ≈ 1.22Cf1 ≈ 0.025/(Lsf
′2
1 ), which appears

to be a good estimate (needs confirmation). Or, perhaps Ctop and C0 could be carefully

measured in practice?

Appendix A: Medhurst accuracy notes

I’ve been unable to find any documented tests of the accuracy of the Medhurst empirical

formula (2), which is a bit odd given its longevity and popularity.a The original work by

Medhurst6 in 1947 claims a fit error of about 5% for (2), but does not provide data.b There

is also lore about Medhurst providing alternate formulas (c.f., Eq. (2) of Ref. 21). If you

know of any such documentation, please share!

a The closest I’ve found is an assertion in Ref. 20 without data.
b Table V in Medhurst6 looks like data, but seems to be a table of values for the convenience of a 1940’s

era audience. In particular, the values of Length / Diameter don’t seem to match the scatter in Figure

9. Interestingly, Table V’s values have up to 8% error compared to (2). If there was a typographic error

where the values given for {3.0,3.5,4.0,4.5} were meant for {3.5,4.0,4.5,5.0}, that would reduce this error.
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Inaccuracy could have escaped notice because (1) is rather insensitive to Cself errors in

the applicable regime of Cload ≫ Cself. For example, if initially Cload = 5Cself and we double

the value of Cself, then f1 only changes by a factor of
√

6/7 ≈ 0.93 (−7%). For the same

reason, it’s difficult to measure Cself accurately.
14

Appendix B: Literature quotes

Here are some fun quotes about the stubborn nature of this topic from its vast literature:

Hubbard (1917):22 “The problem of a coil oscillating in its own free period has proved

one of the most difficult in mathematical physics.”

Breit (1921):23 “This paper is intended to call the attention of physicists and mathe-

maticians to some interesting aspects of the subject of distributed capacity of coils. . . . The

subject has been largely neglected by mathematical physicists.” (Gregory Breit’s Ph.D. dis-

sertation was on Cself.)

Rhea (1997):24 “This author is unaware of any worker who mathematically attacked either

the resistance or capacitance problem and was rewarded for doing so.”

Lee p. 142 (2004):4 “This latter capacitance is somewhat difficult to compute analytically.

To the best of the author’s knowledge, no correct general analytical solution has ever been

published. . . .Many have been offered, but close inspection reveals gross errors.”
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