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TL;DR: Exploration of the normal modes and limiting behavior of a transmission

line with two capacitive loads: one internal and the other terminating. Provides a

toy model for an interesting variant of a Tesla coil called a Tesla magnifier.

There’s a three-circuit variation of a Tesla transformer (or Tesla coil) nicknamed a Tesla

magnifier.1,2 As sketched in Fig. 1, it differs from a traditional two-circuit Tesla coil by the

addition of a “tertiary” circuit directly connected to the output of the secondary circuit.

Researchers have explored similar triple-resonance Tesla transformers as pulsed-power sup-

plies to produce very high voltages.3–6 Tesla-coil enthusiasts have built many to produce long

sparks, but seem to regard them as difficult to design and tune. One practical advantage is

that they allow a good separation between the final output portion and the rest of a system.

This note presents a simple model to calculate the standing-wave resonances (or normal

modes) of the coupled secondary and tertiary system. It does this by approximating both

circuits as transmission lines2,7,8 and their connection as a lumped capacitance, as sketched

in Fig. 1. It uses this model to explore how the connection’s capacitance alters the modes of

a quarter-wave resonator in general, and to analyze a specific, well-documented magnifier.

The current profiles of the resonances provide an example of a nonharmonic Fourier series.9

The modes and how they vary as the loads change are indeed complicated, but their limiting

behavior, especially when one or both loads are large, seems to provide a reasonably intuitive

way to qualitatively understand them.
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FIG. 1. Modeling approach. (a) Side profile of original secondary and tertiary circuits, showing

single-layer solenoids and electrodes. (b) Approximating the secondary-tertiary interface with a

lumped capacitor. (c) Transmission-line model for the combined secondary and tertiary system.

I. MODEL

A. General case of nonidentical lines

Consider two segments of ideal, lossless transmission lines, as sketched in Fig. 1. Let’s

label the first segment corresponding to the secondary with “s” and the second corresponding

to the tertiary with “t.” Within each line, the voltage Vj(x, t) and current Vj(x, t) are coupled

by Telegraphers’ equations,

∂Vj(x, t)

∂x
= −lj

∂Ij(x, t)

∂t
(1)

∂Ij(x, t)

∂x
= −cj

∂Vj(x, t)

∂t
, (2)

for j = s or t, where lj and cj are distributed series inductances and shunt capacitances for

each line segment. By convention, positive current Ij(x, t) flows towards increasing x.

The boundary condition at the bottom (x = 0) is a short circuit, Vs(0, t) = 0. The

boundary condition at the top (x = H) is a capacitive load, Cload, or “topload” for short.

Since we are interested in lossless normal modes (standing-wave resonances), we may consider

harmonic voltages and currents proportional to eiωt with angular frequency ω > 0. Then

the top boundary condition is

It(H, t) = Cload
d

dt
Vt(H, t). (3)

For the limiting case of vanishing Cload −→ 0, this condition becomes It(H, t) = 0. Likewise,

for infinite Cload −→ ∞, it becomes Vt(H, t) = 0.

At the interface between the secondary and tertiary circuits, the electrodes and direct

connection contribute an effective lumped capacitance Ctap. To approximate this, the inter-

face between the secondary and tertiary segments at the tap (x = x0) has the conditions

Vs(x0, t) = Vt(x0, t) (4)

Is(x0, t)− It(x0, t) = Ctap
d

dt
Vs(x0, t). (5)
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For the limiting case of vanishing Cload −→ 0, which removes the tap, the current condition

becomes Is(x0, t) = It(x0, t). Likewise, for infinite Cload −→ ∞, which severs the interface,

both conditions reduce to only one, Vs(H, t) = Vt(H, t) = 0.

For the secondary segment, the bottom boundary condition is satisfied by the forms

Vs(x, t) = Vs sin(ksx)e
iωt (6)

Is(x, t) = Is cos(ksx)e
iωt, (7)

where Vs and Is are complex amplitudes (phasors) and ω is a positive angular frequency.

From the Telegraphers’ equations, the wavenumber ks = ±ω
√
lscs, where the choice of sign

affects the signs of the phasors and the impedances they model. To be cautious, let’s leave

the choice of sign free and return to it later. Then, from the Telegrapher’s equations, the

corresponding characteristic impedance Zs = Vs/Is = −iωls/ks = ks/(iωcs) = ∓i
√

ls/cs.

For the tertiary segment, we need an additional parameter beyond the wavenumber to

have two degrees of freedom. The following forms are convenient

Vt(x, t) = Vt cos[kt(H
′ − x)]eiωt (8)

It(x, t) = It sin[kt(H
′ − x)]eiωt, (9)

where again Vt and It are phasors. Here, the additional parameter H ′ will be set by the top

boundary condition, and equals H in the limit of Cload −→ ∞. Note that H ′ is not unique

up to adding integer multiples of π/kt, which just shifts the profile and occasionally changes

the signs of the phasors. Similar to the first segment, the wavenumber kt = ±ω
√
ltct and

the corresponding characteristic impedance Zt = Vt/It = −iωlt/kt = kt/(iωct) = ∓i
√
lt/ct.

With these forms, the top boundary condition becomes

tan[kt(H
′ −H)] = iωCloadZt. (10)

However, the right hand side is not constant with ω or kt. Substituting for Zt gives

tan[kt(H
′ −H)]

kt
=

Cload

ct
, (11)

where now the right hand side is a fixed ratio. Tangent is an odd function, so for a fixed

sign of H ′ −H, the sign of kt does not matter.

Similarly, the interface conditions become

Vs sin(ksx0) = Vt cos[kt(H
′ − x0)] (12)

Is cos(ksx0)− It sin[kt(H
′ − x0)] = iωCtapVs sin(ksx0). (13)

Dividing the second by Vs sin(ksx0) and using the first gives

1

Zs

cot(ksx0)−
1

Zt

tan[kt(H
′ − x0)] = iωCtap. (14)

Using iωZs = ks/cs and Zs/Zt = ctks/(cskt), this interface condition simplifies to

cot(ksx0)

ks
−

(
ct
cs

)
tan[kt(H

′ − x0)]

kt
=

Ctap

cs
. (15)
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Noting that both tangent and cotangent are odd functions, we see that the signs of ks and

kt do not affect this equation, so long as the sign of H ′ − x0 is fixed.

Pulling everything together, a first form for the model is given by the system

tan
[(

H′
n

H
− 1

)
kt,nH

]
kt,nH

=
Cload

ctH
, (16)

cot(ks,nx0)

ks,nx0

−
(
ctH

csx0

) tan
[(

H′
n

H
− x0

H

)
kt,nH

]
kt,nH

=
Ctap

csx0

, (17)

ks,n
kt,n

=
csZs

ctZt

= sgn(ks,nkt,n)

√
lscs
ltct

, (18)

where x0, H, cs, ct, Zs, Zt, (or ls, lt,) Ctap, and Cload are known inputs. In general, there will

be multiple solutions, so the wavenumbers kj,n and parametersH ′
n now have an explicit mode

index n = 1, 2, 3, . . . in their subscripts. The first line of the system is the top boundary

condition, which gives H ′
n from the other parameters. Note that tangent is periodic to

translations by π, so there are multiple solutions for H ′
n. However, each solution has an

equivalent effect on the next line. The second line is the interface condition, which is a

transcendental equation. It lets you solve for both wavenumbers for all modes, given their

relationship by definition in the third line, the last part of which depends on the relative

sign of the two wavenumbers. Here, and subsequently, let’s choose positive wavenumbers,

since this sign does not matter.

Finally, it’s a little more convenient for numerical use if we introduce the following ca-

pacitances and inductances for the segments,

Cs = csx0, Ls = lsx0, Ct = ct(H − x0), and Lt = lt(H − x0), (19)

then, after rearranging and choosing positive wavenumbers, the system becomes

tan
[(

H′
n

H
− 1

)
kt,nH

]
kt,nH

=
Cload

Ct

(
1− x0

H

)
, (20)

cot

[
kt,nH

α

(
1− x0

H

)]
−

√
LsCt

LtCs

tan

[(
H ′

n

H
− x0

H

)
kt,nH

]
=

kt,nH

α

(
1− x0

H

)(
Ctap

Cs

)
,

(21)

α ks,nx0 = kt,n(H − x0), (22)

where α =

√
LtCt

LsCs

=

√
ltct
lscs

(
H

x0

− 1

)
. (23)

The first line gives H ′
n/H as a function of kt,nH, Cload/Ct, and x0/H. Without loss of

generality, we may choose the solutions

H ′
n

H
= 1 +

arctan
[
kt,nH

(
Cload

Ct

) (
1− x0

H

)]
kt,nH

≥ 1, (24)
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with equality occurring if Cload = 0 or n −→ ∞. Using this, the second line gives kn,tH

as a function of x0/H, Ctap/Cs, Cload/Ct, the electrical-length-ratio parameter α, and the

impedance ratio
√

LsCt/(LtCs) = |Zs/Zt|. The other wavenumbers follow from the third

and fourth lines.

Last, but not least, the resonant frequencies for the modes are

ωn =
ks,n√
lscs

=
ks,nx0√
LsCs

=
kt,n√
ltct

=
kt,n(H − x0)√

LtCt

, (25)

from the Telegraphers’ equations.

B. Spatial profiles and orthogonality

After solving, the spatial variations (or profiles) of voltage and current follow from their

forms (6–9) and the original interface conditions, which give the ratios

Vt,n

Vs,n

=
sin(ks,nx0)

cos[kt,n(H ′
n − x0)]

(26)

It,n
Is,n

=
cos(ks,nx0)−

(
Ctap

Cs

)
ks,nx0 sin(ks,nx0)

sin[kt,n(H ′
n − x0)]

, (27)

where the phasors now include an explicit mode index in their subscripts. The second term

in the numerator of the current ratio creates a discontinuity to account for the current

diverted to the tap capacitance.

Before we continue, it’s worth pausing to capture how orthogonality works for the spa-

tial profiles of voltage and current. First, some background: For typical standing-wave

resonances on a uniform, lossless line with simple open- or short-circuit terminations, the

voltage and current profiles correspond to terms in harmonic Fourier series (sinusoidal terms

with harmonically related arguments). Together, all of the voltage profiles form an orthogo-

nal basis for V (x, t), and likewise, all of the current profiles for I(x, t). This orthogonality it

not just a mathematical convenience, but is also physically required by energy conservation:

Each resonance evolves independently from all others, so its energy cannot depend on any

other resonances. Therefore, the voltage profile and current profile for each resonance must

contribute independently to the total instantaneous energy stored by the line,

U(t) =
1

2

∫ H

0

[
l(x)I(x, t)2 + c(x)V (x, t)2

]
dx, (28)

which occurs if all of the voltage profiles are mutually orthogonal, and all of the current

profiles are mutually orthogonal, in the above integral.

Here, however, we attached external capacitors to the lines, which store energy that’s

not included in (28) when the voltages across them are nonzero and they have nonzero

capacitance. In this case, energy conservation still requires the the current profiles to be

orthogonal, but curiously, it requires the voltage profiles to be typically nonorthogonal. This

also applies to the profiles along the secondary of a Tesla coil (see Ref. 7), and is discussed
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more generally towards the end of Ref. 9. In both cases, the current series is a nonharmonic

Fourier series (sinusoidal terms without harmonically related arguments). The appropriate

inner product for the current orthogonality follows from (28), which was written to allow

spatially varying line parameters. For two profiles Ia(x) and Ib(x), this inner product is

proportional to∫ H

0

l(x)Ia(x)Ib(x)dx = ls

∫ x0

0

Ia(x)Ib(x)dx+ lt

∫ H

x0

Ia(x)Ib(x)dx. (29)

Alternatively, you can show that the forms (6–9) are orthogonal after substitution as follows.

For the first integral, pull out a common factor of Va(x0)Vb(x0). For the second integral,

note that half of the terms cancel using (11) and pull out the same factor Va(x0)Vb(x0) from

the remaining half. Combine terms and convert them to resemble the left side of (15). Then,

noting that the right hand side of (15) is the same for “a” and “b”, everything cancels.

C. Special case of identical lines

For identical lines, ls = lt, cs = ct, and Zs = Zt, so ks,n = kt,n. To simplify notation, let’s

introduce a single wavenumber,

kn = ks,n = kt,n, (30)

and an effective lumped capacitance for the entire line,

C0 = csH = Cs + Ct. (31)

The model then simplifies to the system

tan
[(

H′
n

H
− 1

)
knH

]
knH

=
Cload

C0

, (32)

cot
[(x0

H

)
knH

]
− tan

[(
H ′

n

H
− x0

H

)
knH

]
= knH

(
Ctap

C0

)
. (33)

The first line gives H ′
n/H as a function of knH and Cload/C0, which is

H ′
n

H
= 1 +

arctan
[
knH

(
Cload

C0

)]
knH

≥ 1, (34)

with equality occurring if Cload = 0 or n −→ ∞. Using this, the second line gives knH as a

function of x0/H, Ctap/C0, and Cload/C0. If there is no topload (Cload = 0), then H ′
n = H

and the second line reduces to

cot
[(x0

H

)
knH

]
− tan

[(
1− x0

H

)
knH

]
= knH

(
Ctap

C0

)
, (35)

which gives knH as a function of x0/H and Ctap/C0.
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As a sanity check, note that if the tap is placed at the top (x0 = H), then the system

reduces to the boundary condition of a line with a capacitive load,

(knH) tan(knH) =
C0

Cload + Ctap

, (36)

which is a simple model of a Tesla transformer (see Ref. 7). Likewise, if the tap is placed

at the bottom (x0 = 0), then the system again reduces to this simple model, but with the

value of Ctap removed. To see this, note that tan(knH
′
n) diverges by design.

D. Corresponding cases of identical and nonidentical lines

The case of identical lines seems to have relatively clear limiting behavior, as we’ll see be-

low. Conveniently, there is a way to approximate a nonuniform line with a nearly equivalent

uniform line, which provides a opportunity to understand complicated nonuniform lines via

simpler uniform lines. This approximation isn’t valid in general, but seems to work well for

most cases of interest (lowest few modes for small x0/H with Ls ≲ Lt and little influence

from Cs). Intuitively, it’s inspired by connecting different lines that should have similar

low-frequency, conventional equivalent circuits for the lowest two resonances.

In detail, the approximation comes from removing the ratio of distributed capacitances

in (15). Assuming the electrical length of the secondary is small, or |ks,nx0| ≪ 1, then we

can use cot(x) ≈ 1/x for |x| ≪ 1 and multiply all terms by cs/ct, so that the cotangent

term on the left becomes cs/(ctk
2
s,nx0). If we redefined this as 1/(k2

t,nx
∗
0) for a new effective

value of x∗
0, then we could convert it back to a cotangent. Eq. (15) then has a single value

of k, just like a uniform line. Completing the rest of the derivation above gives a model for

a uniform line with the following parameters,

k∗ ≈ kt,n (37)

x∗
0 = (ls/lt)x0 (38)

H∗ = H + x∗
0 − x0 (39)

H ′∗
n ≈ H ′

n + x∗
0 − x0 (40)

c∗ = ct (41)

C∗
0 = ctH

∗ = Ct + Cs

(
lsct
ltcs

)
(42)

where the addition of stars on the left sides denote effective uniform-line parameters. Note

that H ′∗
n still follows from (34) using these new parameters.

The two relationships above that are approximately equal indicate that the final values

of those quantities come from solving the uniform-line system. That is, while they’re equal

during the derivation of the above, their final values will differ from the corresponding

nonuniform-line values at the level of this approximation’s inaccuracy. In contrast, the

other lines with equal signs are input parameters to that system.

All together, when this approximation is valid, you can construct the dimensionless ratios

x∗
0/H

∗, Cload/C
∗
0 , and Ctap/C

∗
0 that describe the effective, equivalent uniform line for the
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nonuniform line. Physically, this approximation is equivalent to making a nonuniform line

uniform in two steps: (1st) by stretching the secondary so that the distributed inductance

matches the tertiary, ls → l∗s = lt, while keeping Ls unchanged, and (2nd) by discontinuously

setting the distributed capacitance to be the same, cs → c∗s = ct. In the conventional

equivalent circuit, this corresponds to keeping Ct, Lt, Ls, Ctap, and Cload fixed, and assuming

Cs (or any resulting change to it) is not important.

II. NUMERICAL RESULTS

A. Identical lines without a topload

Let’s begin with the “unloaded” case of identical lines with no topload (Cload = 0), which

is modeled by (35). Fig. 2 shows two types of plots of numerical solutions for the first few

wavenumbers kn of the whole line. In all plots, the wavenumbers are shown as (2/π)knH,

so that unloaded quarter-wave solutions correspond to odd numbers: (2/π)knH = 2n− 1 =

1, 2, 3, . . . The colorful curves are the solutions, and the dashed horizontal lines with matching

colors that the curves start from on the left are their corresponding quarter-wave modes.

The first type of plot shows the variation with the position of the tap (shown as x0/H), for

a few fixed sizes of the tap capacitance (Ctap/C0). For zero tap capacitance, the solutions

are the quarter-wave modes. For small tap capacitance, the top left plot shows that the

wavenumbers begin to deviate if the tap position is not positioned at a quarter-wave voltage

node. As the tap capacitance increases, the middle and bottom left plots show that these

deviations asymptote to the following three cases indicated by several dashed curves.

The first limiting case, indicated by a grey dot-dashed curve, corresponds to a lumped

LC resonance of the tap capacitance with an effective inductance for the line. We can model

this resonance using k = ω
√
lc for the line, ω = 1/

√
LC for a lumped LC circuit, and then

C ≈ Ctap + Cs and L ≈ Ls, which gives

k
{Ls}
tap ≈ 1

H

√(
H

x0

)(
C0

Ctap

)
, (43)

where the approximation assumes Ctap ≫ Cs.

The other two limiting cases, indicated by the black dashed curves, correspond to the

limit of an infinite tap capacitance, which severs the line at the tap. This turns the secondary

into an isolated half-wave resonator of length x0, which has the modes

k{cut, λ/2}
s,n = πn/x0, (44)

and turns the tertiary into an isolated quarter-wave resonator of length H − x0, for which

k
{cut, λ/4}
t,n = (2n− 1)π/[2(H − x0)]. (45)

To help differentiate between the two, the curves for k
(cut)
s,n are dot-dashed and those for

k
(cut)
t,n are dashed. In the plots on the left side, the curves are also distinguishable because
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FIG. 2. Identical lines without a topload. Solid curves are solutions of (35) for the first few

wavenumbers kn for the entire line. The left (right) column shows the solutions for fixed tap

capacitance (position) as a function of tap position (capacitance). For reference, colorful horizontal

lines indicate quarter-wave modes: full-width dashed for unloaded, and only on the left, partial-

width dotted for loaded modes of (36) with Cload = 0. The grey dot-dashed curves are the lumped

mode of (43). The black dot-dashed curves are the cut-segment modes of (44), and the dashed of

(45).

those for k
(cut)
s,n diverge as x0 → 0, and those for k

(cut)
t,n as x0 → H. Note that these limiting

curves intersect the unloaded quarter-wave modes at their voltage nodes, creating interesting

regions of near degeneracy about those intersections.

Additionally, as the tap position nears the top, the wavenumbers asymptote to the loaded

quarter-wave modes of (36) with Cload = 0, as expected, which are indicated by partial-width
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horizontal dotted lines with colors matching the wavenumber curves. As the tap capacitance

increases, the loaded quater-wave modes themselves asymptote to coincide with the half-

wave modes (44) at x0 = H.

The second type of plot shows the variation with the size of the tap capacitance, for a few

fixed tap positions. These are shown on the right in Fig. 2, and have all the same curves as

those on the left. Since the tap position is fixed, the infinite-tap-capacitance limiting cases

are now horizontal lines. The lumped resonance (43) is still a curve, and the top right plot

shows the hybridization it causes as it passes through the wavenumbers, which is harder to

see in the other plots.

Exploring the voltage and current spatial profiles, the results are similar to expectations,

with the shapes stretching between unloaded quarter- and half-wave solutions as they near

odd and even numbers, respectively, but their joining across the tap has surprises, especially

for current. When there are narrow avoided crossings where the dashed limiting curves

intersect, such as shown in the top right of Fig. 2, there are interesting cases of pairs of

neighboring modes having a hybridized appearance.

Of particular interest is the regime of large tap capacitance. Generally, this tends to

produce a prolonged hybridization of the two lowest modes, giving profiles like those shown

in Fig. 3. This is because the lumped mode (43) eventually stretches the fundamental
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FIG. 3. Voltage (left) and current (right) spatial profiles of identical lines with large tap ca-

pacitance. (Top row) Identical line with parameters that correspond to the nonidentical “3:4:5”

magnifier example given later. The profiles strongly resemble those in Fig. 5. The hybridized ap-

pearance of the two lowest modes often occurs in the large-tap regime (e.g., similar profiles result

near the avoided crossing in the top right of Fig. 2 with x0/H = 0.01 and Ctap/C0 = 40). (Bottom

row) Effect of modifying the line to have a significantly larger tap and no topload. Notice that the

profiles are still qualitatively similar, despite the large tap effectively severing the line.
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FIG. 4. Identical lines with a topload. (Left) Solid curves are solutions of (32) and (33) for the

first few wavenumbers kn for the entire line. For reference, dotted horizontal lines indicate loaded

quarter-wave modes of (36) with Ctap = 0. The grey dotted curve is the lumped mode of (47).

The black dot-dashed curves are the cut segment modes of (45), and the dotted of (46). (Right)

Highlight of k1, which transitions between loaded quarter-wave modes (36) with Ctap = 0 on the

left and with Ctap ̸= 0 on the right, shown with a partial-width dashed line.

quarter-wave mode towards the lumped limit of spatially constant current and roughly

linearly varying voltage, just like for a large topload in a Tesla coil. However, for a Tesla

magnifier, this regime has not one but effectively two such lumped modes, because the two

lowest modes both have wavenumbers near or below the quarter-wave limit. As a result,

to maintain orthogonality, the current profiles usually are sum and difference combinations

(hybridizations) of the currents in the secondary and tertiary, as shown. The corresponding

voltage profiles tend to resemble 1/4- and 3/4-wave modes, despite both being effectively

1/4-wave or lower modes. Eventually, however, an infinite tap capacitance effectively severs

the line, making the two lowest modes correspond to current only in the secondary or tertiary.

B. Identical lines with a topload

Continuing from above, let’s consider the “loaded” case of a nonzero topload (Cload ̸= 0),

which is modeled by (32) and (33). Fig. 4 shows two related plots of numerical solutions for

the first few wavenumbers kn of the whole line. The colorful curves are the solutions, and

the dotted horizontal lines with matching colors are their corresponding loaded quarter-wave

modes of (36) for Ctap = 0, which for large Cload asymptote to half-wave modes.

Both plots highlight what seems to be the limiting behavior when both the tap and

topload capacitances are much larger than C0. The right plot highlights the lowest mode,

and shows its transition from a loaded quarter-wave mode of (36) with Ctap = 0 on the

left, to one with Ctap ̸= 0 on the right. The left plot shows limiting cases for the higher

modes. The cut secondary modes of (44) are unchanged. However, increasing the topload

smoothly transitions the cut tertiary modes from the previous quarter-wave model of (45)
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to a half-wave model given by

k
{cut, λ/2}
t,n = πn/(H − x0), (46)

shown with the black dotted curves. The previous lumped resonance of (43) seems to become

similar to an LC resonance of the Ctap with both Ls and Lt in parallel,

k
{Ls∥Lt}
tap ≈ 1

H

√(
1

x0/H
+

1

1− x0/H

)(
C0

Ctap

)
, (47)

shown with the grey dotted curve, though not perfectly since this ignores Cload. (Note the

missed intersection with the lowest avoided crossing on the right.) For an improved lumped

model that agrees well with both of the lowest two curves, please see Ref. 2.

C. Nonidentical lines example of a real magnifier

Finally, let’s explore the magnifier described in Ref. 11. That reference provides the

most detailed documentation I’ve found of a magnifier. For additional comparison, Ref. 10

provides theoretical results from a simulation of this magnifier using a much more realistic

transmission-line-style model than the uniform-line toy-model approach considered here.

The “3:4:5” magnifier in Ref. 11 was designed to transfer all of the energy from a capacitor

in its primary circuit to the effective output capacitance of the tertiary using a design process

outlined in Ref. 12, which builds on Ref. 3. For this particular magnifier, this involved

adjusting the lowest three normal modes of the entire magnifier (primary, secondary, and

tertiary circuits) to have resonant frequencies with relative ratios of 3 to 4 to 5.

To proceed, we need to compile parameters for the 3:4:5 magnifier from Ref. 11: The

secondary height is x0 = 10.2 cm. The tertiary height wasn’t stated, but estimating it both

from a description of its winding13 with its inductance, and from its diameter13 and apparent

aspect ratio in a picture, gives H − x0 ≈ 32.4 ± 0.4 cm. Thus H ≈ 42.6 cm and the tap

position ratio x0/H ≈ 0.24. The low-frequency inductances are Ls = 3.948 mH and Lt =

28.2 mH. The calculated Medhurst capacitances are 7.1 pF for the secondary and 5.6 pF

for the tertiary. Following Ref. 14, we can roughly estimate the uniform capacitances as

three times the Medhurst capacitances, giving Cs ≈ 21.3 pF and Ct ≈ 16.8 pF. All together,

the parameter α ≈ 2.37. The remaining two capacitances are harder to estimate. For the

topload, the stated effective capacitance of Cload + C
{Medhurst}
t ≈ 9.8 pF, so Cload ≈ 4.2

pF. However, the simulation of Ref. 10 said adding 2 pF improved agreement, so let’s use

Cload = 6.2 pF. For the tap, the stated effective capacitance of Ctap+C
{Medhurst}
s + (unknown

tertiary and other contributions) ≈ 79.64 pF for a 62 pF lumped tap capacitor. For our

use, we need to remove direct contributions from the secondary and tertiary,2 but keep any

other contributions. However, let’s again follow the simulation of Ref. 10, which found good

agreement with Ctap = 70 pF.

Table I shows that these parameter reproduce the first few resonant frequencies f =

ω/(2π) measured and previously simulated reasonably well. This is actually surprising,

because this work neglects the primary circuit, while the other values do not. Fortunately,
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TABLE I. Comparison of the lowest resonant frequencies of the 3:4:5 magnifier. The results of this

work agree reasonably well, except for missing a resonance from neglecting the primary circuit.

Source fa (kHz) fb (kHz) fc (kHz) fd (kHz) System

Experiment (Ref. 11): 232 307 385 − Primary, secondary, and tertiary.

Simulation (Ref. 10): 227 303 383 873 Primary, secondary, and tertiary.

This work: 227 − 361 922 Secondary and tertiary only.

including the primary circuit, which had Lp = 62.02 µH, Cp = 5.08 nF, and a self resonance

at about 284 kHz, seems to have mainly produced the resonance near 307 kHz, with little

perturbation to the other lowest modes. The remaining frequencies correspond closely to

the first three normal modes of the isolated secondary-tertiary system. (For a comparison

with a lumped-element model, please see Ref. 2.)

Figure 5 shows the profiles for the first three secondary-tertiary normal modes, as well

as an approximation of the primary driven mode’s voltage profile. The shapes of the

normal modes agree reasonably well with those predicted in Ref. 10. Though their volt-

age profiles loosely resemble 1/4-, 3/4-, and 5/4-wave mode shapes, the ratios kt,n/kt,1 ≈
{1, 1.59, 4.06, 6.96, 7.82, 10.01, 13.11, 15.29, 16.25, . . .} shows clear deviations from the ideal

quarter-wave ratios of {1, 3, 5, 7, 9, 11, 13, 15, 17, . . .}. In particular, the second mode (corre-

sponding to fc) is very nearly another 1/4-wave mode, despite the resemblance of its voltage

profile to a 3/4-mode shape (as anticipated from earlier).

The crude approximation of the primary-driven mode comes from appealing to lumped LC

circuits: Assuming the primary induces the same electromotive force, each mode contributes

a voltage proportional to 1/[1− (ω/ωn)
2]. Keeping only the first two modes, and accounting

for the sign flip in the current profile for the second mode, leads to the superposition shown in

the bottom of Fig. 5. The fact that the voltage profile for this mode resembles another 3/4-

wave mode follows from this superposition, which seems to explain the curious appearance

of a mode doubling in Ref. 10’s results. However, the current profile (not shown) that

follows from this approximation does not agree well. This disagreement likely follows from

not reproducing the voltage node at x0 in Ref. 10’s results, which is likely a result of the

design process using this mode to trap all the energy in the tertiary’s output capacitance

(isolated-tertiary mode). While it’s tempting to try to improve the crude approximation’s

agreement, it’s not warranted for such a simple model that neglects the primary.

The corresponding uniform line for this magnifier is given by the effective parameters

x∗
0/H

∗ ≈ 0.123, Cload/C
∗
0 ≈ 0.219, and Ctap/C

∗
0 ≈ 3.65, and reproduces the three resonant

frequencies on the bottom row of Table I to within 3% or better. Fig. 3 show profiles for

this line, which agree reasonably well with those in Fig. 5. This uniform line falls in the

large tap (but weak load) regime discussed earlier.
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FIG. 5. Spatial profiles for the example magnifier of Ref. 11. Voltage (top) and current (middle)

profiles for the first three modes, normalized at the top and bottom, respectively. Approximation

(middle) of a voltage profile driven by the primary circuit. The dashed vertical line marks x0,

and the dotted curves are reflections of the solid curves to guide the eye. These profiles agree

reasonably well with more accurate simulations in Ref. 10 that include the primary circuit.

III. DISCUSSION

This note presented a toy model for the normal modes of the coupled secondary and

tertiary of a Tesla magnifier (or a shorted transmission line with internal and terminating

capacitive loads). The model seemed to work well in comparison with a real magnifier and a

more sophisticated simulation. It also provides another interesting example of nonharmonic

Fourier series.

However, my original interest in this was to see if the curious appearance of a mode
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doubling in the simulation of Ref. 10 might indicate a more general phenomenon across the

mode structure of this and related systems. Unfortunately, this does not seem to be the

case. The general structure seems rather complicated for magnifiers, even excluding the

primary, though this note offers several limiting behaviors to guide intuition.

That said, mode doublings do indeed occur, as discussed above. Of particular interest

is the regime of large tap capacitance, which tends to feature a pair of lowest modes that

are hybridized, such as with the 3:4:5 magnifier or in Fig. 2(top right) for Ctap/C0 ≳ 40. I

suspect that this large-tap regime is common in actual magnifiers, and I suspect that the

design procedure of Ref. 12 tends to use this regime to generate an isolated-tertiary mode.

Otherwise, localized mode doublings do indeed occur in chance hybridizations from the tap

capacitance (and likely with the primary circuit, if it was included). For example, see the

(very narrowly) avoided crossings in Fig. 2(top right) for the 2nd and 3rd modes.

Interestingly, the large-tap regime seems related to an intriguing bit of lore I’ve encoun-

tered while reading about magnifiers, which is that the tertiary is often said to act as an

isolated quarter-wave resonator. Of course, the careful design procedure of Ref. 12 can defi-

nitely achieve this momentarily as energy is briefly isolated in the tertiary alone. That said,

I was generally skeptical of this idea in the past, because the secondary and tertiary are

directly connected and thus strongly coupled. However, one of the limiting behaviors shown

in this note is the ability of a large tap capacitance to asymptotically sever the secondary

and tertiary. Thus, while in the large-tap regime, but before reaching that limit, it seems

likely that one of the modes will tend to approximate an isolated tertiary (with topload).

For a derivation of a lumped-element equivalent circuit for magnifiers, please see Ref. 2.
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