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TL;DR: A brief introduction to some special topics about light shifts for atoms and

molecules and why their spherical-tensor properties are useful.

This note’s intended to help experimental physicists familiar with light shifts learn more

about their spherical-tensor properties, which enable you to take advantage of the mathe-

matical machinery from the quantum theory of angular momentum. This was very useful in

my previous work to engineer magic-wavelength optical lattices1,2 and exploit mixed quanti-

zation in spectroscopy.3 Additionally, it provides a short introduction to some special topics

about light shifts.
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I. LIGHT SHIFTS

If you use light to study particles like atoms or molecules, it’s important to understand the

ways that the light can change (or shift) each particle’s energy. Such light shifts (also known

as dynamic or AC Stark shifts) are often used to confine and control particles in optical dipole

traps and lattices. However, light shifts can also perturb measurements or produce errors,

for example, in atomic clocks. For an introduction to light shifts, I recommend Refs. 4–8.

To proceed, let’s assume that the particles are neutral and nonpolar, that there is enough

light to treat it semiclassically, and that the light only induces virtual transitions. The origin

of the light shift is then the electric-dipole (E1) interaction

VE1 = −d · E(t) (1)
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of the light’s electric field E(t) and the particle’s instantaneous electric-dipole moment d.

This interaction is nonzero only between quantum states of neutral particles with different

parities, so only leads to second- and higher-order perturbations. Note that this interaction

may also affect the hyperfine and Zeeman structure of particles (see below).9,10

While higher-order perturbations do exist and are important (e.g., to atomic clocks11),

the “light shift” almost always refers to the second-order energy perturbation from (1).

Conventionally, this shift is expressed using an electric-dipole polarizability α as the work

W = −1

2
Re(α)

〈
|E(t)|2

〉
(2)

for a single particle, where the brackets denote a time average and the factor of 1/2 comes

from inducing the dipole moment. The complex-valued polarizability α captures how the

shift depends on the properties of the particle and of the light, and is well known for most

combinations of particles and wavelengths of experimental interest.

There are some rather important properties of light shifts that aren’t obvious from the

simple form of (2). We can expose many of them by rewriting the light shift in a spherical-

tensor form, even without actually calculating the shift. In the next section, we’ll do just

that to illustrate the light shift’s dependence on the electric field’s geometry, the light’s

polarization, and the particle’s quantum state (angular momentum), as well as its ability to

couple and mix different states with “off-diagonal” shifts. Afterwards, we’ll touch on some

additional special topics, such as why extrapolating to zero intensity (W ∝ |E(t)|2 −→ 0)

doesn’t always remove light shifts, despite the appearance of (2).

II. SPHERICAL-TENSOR FORM FOR LIGHT SHIFTS

While the light shift (2) is a second-order perturbation from the interaction (1), it’s con-

venient to model it as a first-order expectation of an effective potential using a polarizability

operator (or polarizability tensor) α.9,12 In this approach, the light shift is represented by

the first-order expectation of a potential that is conventionally written in a dyadic form as

Veff = −1

2
〈E(t) ·α · E∗(t)〉 , (3)

where again brackets denote a time average. The same potential can often be used for several

states of interest, such as the ground-state manifold of an atom or molecule. Approximations

like (3) are common in molecular physics, for example, where they are sometimes called

effective Hamiltonians. They are typically derived using a Van Vleck, contact, or related

transformation.9,10,12,13 Importantly, they reproduce not only energy shifts but also mixing

effects to second order in the applied field strength. For more on this, I recommend the

treatment of Van Vleck transformations in Ref. 13 (p. 315).

To proceed, we won’t need to know much more about α. However, for clarity, we can

connect (2) and (3) as follows. For a particle with eigenstates |j〉 and energies Ej, the

light shift W = 〈ψ|Veff |ψ〉 of a chosen state |ψ〉 from monochromatic light with angular

frequency ω can usually be modeled by α = (2/~)
∑

j 6=µ p|j〉〈j|pωj/(ω2
j−ω2) with transition
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frequencies ωj = (Ej − Ek)/~, in the rotating-wave (or secular) approximation. This gives

the typical result W = −(1/~)
∑

j 6=ψ〈ψ|E · p|j〉〈j|p · E∗|ψ〉ωj/(ω2
j − ω2).12

Finally, we can rewrite (3) in spherical-tensor form using Eq. (5.52) of Ref. 14 as

Veff = −1

4

2∑
k=0

(−1)k T k(α) · T k(E,E∗)

= −1

4

2∑
k=0

k∑
p=0

(−1)k−p T kp (α)T k−p(E,E
∗), (4)

assuming monochromatic light with the time-independent field amplitude E and its complex

conjugate E∗. Here and subsequently, the spherical-tensor notation follows Ref. 13. For

convenience, the second line expands the tensor contractions to show the tensor elements

T kp . The effects of the different contractions with k = 0, 1, and 2 are usually called “scalar,”

“vector,” and “tensor” light shifts, respectively. Sometimes, the tensor rank k is referred

to as an angular momentum. If this seems odd for potentials and perturbations (versus

particles), note that it’s just a mathematical property from the rotational invariance of (1).

The spherical-tensor form (4) is useful because it separates the dependence on the particle

from the dependence on the field. That is, the tensor T k(α) only operates on the particle and

the tensor T k(E,E∗) only depends on the field. Therefore, the particle and field portions can

be evaluated independently. However, note that the light’s frequency ω enters parametrically

through α = α(ω). To help evaluate expressions like (4), I recommend the summary of

spherical-tensor algebra at the end of Ch. 5 in Ref. 13 (p. 171).

The form (4) directly illustrates the dependence on the light’s geometry and polarization

through the tensor T k(E,E∗). For reference, explicit formulas for the elements T kp (E,F) in

terms of Cartesian components, spherical components, and vector expressions are

T 0
0 (E,F) = − 1√

3
(ExFx + EyFy + EzFz) = − 1√

3
E · F (5)

T 1
0 (E,F) =

i√
2

(ExFy − EyFx) =
i√
2

(E1F−1 − E−1F1) =
i√
2

[E× F]z (6)

T 1
±1(E,F) =

1

2
[±i(EyFz − EzFy)− (EzFx − ExFz)] = ± 1√

2
(E±1F0 − E0F±1)

=
1√
2

(±i[E× F]x − [E× F]y) (7)

T 2
0 (E,F) =

1√
6

(2EzFz − ExFx − EyFy) =
1√
6

(E1F−1 + 2E0F0 + E−1F1)

=
1√
6
E · (3ẑẑ − 1) · F (8)

T 2
±1(E,F) =

1

2
[∓(ExFz + EzFx) + i(EyFz + EzFy)] =

1√
2

(E0F±1 + E±1F0) (9)

T 2
±2(E,F) =

1

2
[ExFx − EyFy ± i(ExFy + EyFx)] = E±1F±1 (10)

where the vector spherical components E0 = Ez and E±1 = i(Ey∓Ex)/
√

2 (Ref. 13 pp. 161–

162, with minor fixes for T 1
p ; Ref. 15 pp. 64–65).



4

An immediate consequence is that the geometry and polarization of the light only affect

the vector and tensor shifts, because T 0
0 (E,E∗) ∝ |E|2. Additionally, there are no vector

shifts for linearly polarized light, because T 1
p (E,E∗) = 0 if E = E∗. If the geometry or polar-

ization are variable, these elements will show how that variability affects the different terms in

the light shift. For example, for linearly polarized light with a variable orientation such that

E ∝ cos(θ)ẑ + sin(θ)x̂, the only nonzero elements are T 0
0 (E,E∗) = −|E|2/

√
3, T 2

0 (E,E∗) =

[3 cos(θ)2 − 1]|E|2/
√

6, T 2
±1(E,E∗) = ∓ sin(2θ)|E|2/2, and T 2

±2(E,E∗) = sin(θ)2|E|2/2.

For particles with energy eigenstates that have well-defined angular momentum, the

form (4) directly illustrates which terms cause “diagonal” energy shifts (p = 0) and which

cause “off-diagonal” state mixing (p 6= 0), assuming the tensors are rotated to have the

same quantization axis as the particle. This is because p directly relates to the change

in azimuthal angular momentum quantum number m through the Wigner-Eckart theorem:

〈Jm|T kp |J ′m′〉 ∝
(
J k J ′

−m p m′

)
. Another consequence of this theorem is that vector shifts

exist only if the quantum number J ≥ 1/2, and tensor shifts exist only if J ≥ 1.

Note that when off-diagonal mixing is significant, it can influence the particle’s quantiza-

tion. However, if the particle’s quantization is not affected by the mixing, or approximately

so, then the p 6= 0 terms can usually be ignored. Returning to the example of linearly po-

larized light with E ∝ cos(θ)ẑ+ sin(θ)x̂, the elements T 0
0 (E,E∗) and T 2

0 (E,E∗) will produce

diagonal light shifts, and the elements T 2
±1(E,E∗) and T 2

±2(E,E∗) will produce off-diagonal

mixing. Assuming the particle’s quantization is fixed, only the first two elements with p = 0

will be significant, and the angle θ can be used to tune the light shift.

With some effort, one can clean up the results for the typical case of linearly polarized

light and a particle in an angular-momentum state |Jm〉 with J ≥ 1 so that the light shift

is given by the form (2) with the effective polarizability

α = α(J,m, ω, θ) = α0(J, ω) + α2(J, ω)

(
3 cos2 θ − 1

2

)(
3m2 − J(J + 1)

J(2J − 1)

)
. (11)

This follows from the Wigner-Eckart theorem and repackaging its reduced matrix elements

into scalar α0 and tensor α2 polarizabilities so that α matches the standard “J representa-

tion” form16 when θ = 0. Again, (11) assumes the quantization axis is fixed, for example,

by an applied magnetic field, which leads to the control of the tensor shift through the angle

θ of tilt between the linear polarization orientation and the quantization axis. For other

light polarizations, a similar effective polarizability can be constructed that will include vec-

tor shifts.17 Please note that care is needed in using formulas such as (11) for atoms with

hyperfine structure.10,17

Before we continue, please note that there are many different conventions and notations

for light shifts, particle polarizabilities, light polarizations, and spherical tensors. Therefore,

please double check any formulas you use, including those in this note. In full disclosure, I’m

not confident I’ve sanitized this note of all typo’s, especially for complex-valued E. Please

feel free to share corrections by emailing contact-me (at) bartmcguyer (dot) com.

For much more on this subject, I recommend Ch. 19 of the textbook Ref. 17. For a

detailed derivation of light shifts for a complex alkali-metal atom (Cs), I recommend the
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paper Ref. 10. For calculating polarizabilities for alkaline-earth atoms like Ca, Mg, and

Sr, I recommend Ref. 18. And last but not least, for spectroscopic data to input into such

calculations, I recommend the NIST ASD database.19

A. “Magic” wavelengths, angles, and traps

Light shifts often produce undesirable effects when they aren’t identical for certain states

of a particle, say ground and excited states or different m sublevels. Fortunately, it’s often

possible to arrange an experiment’s conditions to null, or minimize, the differential light

shifts between certain states. Such conditions are traditionally called “magic.”

For example, consider a measurement of a transition linewidth for a particle held in an

optical trap made from linearly polarized light. If the trap’s light shift is not identical for the

states connected by the transition, then the trap will broaden the measured linewidth. To

remove this broadening, the simplest approach is to turn off the trap, making the total light

shifts from the trap zero for both states. While this is a common approach to remove shifts

from non-trapping light, for trapping light it’s undesirable because it also releases the par-

ticles and limits the measurement time, introducing its own broadening. Instead, we could

make a “magic” trap with identical light shifts for the states connected by the transition.

Without introducing new light, we can do this by making the effective polarizabilities of each

state, both of the form (11), identical using a “magic” (zero-shift or tune-out) wavelength

and also a “magic” angle θ (if J ≥ 1) for the trapping light.

This is particularly straightforward if the states of interest are the different sublevels

m of the same manifold with J ≥ 1, say in the particle’s ground state. In this case,

they share the same effective polarizability (11), whose value depends on |m| so is magic

already for sublevels with the same |m|. The polarizability can be tuned to be identical

for all m by nulling the tensor shift, which occurs at the well-known4 magic angles of θ =

± arccos
(
1/
√

3
)
≈ ±54.7◦. These zero-tensor-shift magic angles have a long history (i.e.,

201Hg, p. 99 of Ref. 9) and continue to find applications (e.g., trapping polar KRb20).

Note that a given magic wavelength likely isn’t suitable for all experiments. For example,

optical traps generally need magic wavelengths far from any particle transitions (resonances),

to keep particle lifetimes and temperatures as long and cold as possible in the trap. Finding

such far-off-resonance magic wavelengths tends to require precise theoretical calculations.

However, traditional optical-pumping experiments almost exclusively use resonant light, so

need magic wavelengths very close to a transition to keep pumping rates high. Fortunately,

magic wavelengths tend to exist near transitions because the differential light shift for an

ideal two-level system has a dispersive shape that crosses zero at resonance. For real atoms

with hyperfine structure, such as those used in Rb vapor-cell atomic clocks, it’s a little more

complicated. For an introduction to this, I can offer Section 2.1.3 of my dissertation, Ref. 8.

Interestingly, it took until 201621 to precisely measure the light shift of the 87Rb 0–0 clock

transition versus wavelength, which matched theoretical calculations from 1968.22

For an example of using (11) to experimentally find magic conditions for an optical lattice,

I offer my previous work with 88Sr2 in Ref. 1. In particular, the Fig. S1 of its Supplementary

Information plots data showing the wavelength and angle dependence of (11).
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For three examples of feedback techniques to suppress the light shift in vapor-cell atomic

clocks, I offer my previous work with Rb and Cs in Refs. 8 and 23 and recommend Ref. 24.

B. Mixing from off-diagonal light shifts

It seems to be less appreciated that light shifts also induce state mixing in addition to en-

ergy shifts, just like static electric and magnetic fields do. After the discovery of light shifts,

though, such mixing seems to have been readily explored, for example, to induce resonances

from fictitious fields,25 to alter Zeeman shifts,25 and to change ground-state structure.26

Perhaps this is because mixing effects are typically less significant than energy shifts. Nev-

ertheless, it’s important to be aware of this mixing because it can affect state quantization,

energies, spectroscopy, transition strengths, and experimental procedures, such as nulling

stray magnetic fields (see below). This mixing can also be exploited in experiments, and may

offer opportunities to, say, create novel optical traps or fine-tune the magnetic sensitivity of

clock states similar to radio-frequency dressing techniques.

For an example of an experiment in which such mixing was significant and beneficial,

I offer my previous work with 88Sr2 spectroscopy in Ref. 3. This work studied transition

strengths between states with different quantizations: ground states with mixed quantization

from a competition of tensor light shifts and weak Zeeman shifts, and excited states quantized

by strong Zeeman shifts. This differing quantization simplified the molecular spectroscopy by

allowing the measurement of transitions between all possible ground and excited sublevels by

detecting only a few ground sublevels. For example, Fig. 4 of Ref. 3 shows how this mixed

quantization created the illusion of highly forbidden |∆m| = 4 single-photon transitions.

Such mixed quantization also affected the measurement of transition strengths, requiring a

correction derived in the Supplementary Material.

One common experimental procedure where this mixing is likely to be significant is the

nulling of applied magnetic fields, because near zero total magnetic field such mixing can

cause dramatic changes to quantization. For an example of this, I offer Fig. 3.13 in Section

3.4.1.2 of the dissertation Ref. 27. This phenomenon can also perturb measurements that

extrapolate to zero total magnetic field, say to determine a zero-field binding energy.

C. Importance of simultaneous perturbations

Last but far from least, note that accurate calculations of light shifts and magic conditions

require treating all competing perturbations simultaneously.17 The effective potential (4)

does not account for any such perturbations. Remember, the actual interaction is (1) and

the light shift is its second-order perturbation, modeled for convenience as a first-order

expectation of (4). For particle states with hyperfine or other significant interactions, all

such interactions should be treated on equal footing, simultaneously with (1). Not doing

this has led to incorrect predictions for magic conditions.10,28 Therefore, make sure to search

for the most in-depth literature on light shifts relevant to your experiment.

For an introductory example, I offer my previous work with hyperfine shifts of alkali-
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metal atoms in Ref. 29. This work calculates the change in ground hyperfine couplings from

static electric fields in its Appendix (DC Stark shifts), which are important in atomic clocks.

The leading effect is a third-order perturbation linear in hyperfine coupling and quadratic

in (1). I offer this work because it’s simpler than full-scale calculations of magic conditions.

III. SPECIAL TOPICS

Light shifts are a surprisingly rich subject, providing a seemingly endless supply of special

topics. This is probably unavoidable since they’re one aspect of the vast subject of light-

matter interactions. For experimentalists, though, this can make learning about them feel

daunting, since the phrase “light shift” refers to different things in different contexts. To

make this a little more clear, notice that this note only considered the most common type of

light shifts. It did not at all address other important aspects, such as shifts for polar particles

or ions, from real transitions, for quantized light (photons), or for multi-photon spectroscopy,

nor the Autler-Townes effect (e.g., Mollow triplet), dressed states, or the connection with

index of refraction and slow light. All of these aspects and more are worth exploring further.

While I’ve already included many examples from my previous work, please allow me to

conclude this note with a few more to share the following special topics.

A. Error from extrapolating to zero light intensity

A conventional approach to remove measurement errors due to light shifts is to extrapolate

to zero light intensity (|E(t)|2 −→ 0). This follows from the form of (2), which shows that the

light shift is proportional to the light intensity: W ∝ |E(t)|2. However, this isn’t guaranteed

to always work for at least the following three reasons.

First, remember that the form (2) only includes second-order perturbations from (1),

which are linear in intensity. In addition, there will be higher-order perturbations from (1)

that are nonlinear with the light intensity, so do not linearly extrapolate to zero. Such

nonlinear light shifts are important in very precise measurements and atomic clocks.11

Second, remember that the form (2) only connects the light shift at a given location with

the intensity at that same location. If the electric field varies spatially, then the actual light

shift for a particle depends on how it spatially samples the varying field. If this spatial

sampling depends on the light intensity, as it usually does for particles in an optical trap,

then extrapolating to zero intensity isn’t guaranteed to fully remove the light shift. While

such an error is generally small, it may be significant in precision measurements and optical

lattice clocks. For more on this, I offer my work with 88Sr2 thermometry in Ref. 2.

Third, similarly, for spatially nonuniform non-trapping light, for example, in optical

pumping experiments, the superposition of lineshapes from an ensemble may have a line

center that varies nonlinearly with intensity.30
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B. Measuring temperature with light shifts

If the light intensity varies spatially, then the light shift for a particle depends on how

it samples the intensity, as mentioned above. As a result, for an ensemble of particles

confined in an optical trap, the distribution of motional states maps into a distribution of

light shifts. Quite often this is a nuisance because it broadens transitions and dephases

ensembles. However, it also provides a direct way to measure temperature using light shifts.

My previous work with 88Sr2 in Ref. 2 demonstrated this by using a nearly magic optical

lattice to imprint the temperature into the lineshape for a narrow transition. Unlike the

conventional approach of using sideband areas, this approach only depends on frequencies.

C. Suppressing light shifts with quadrature error signals

My introduction to light shifts came from working to remove them in Rb vapor-cell

atomic clocks.31 Such clocks use a phase-sensitive, frequency-modulated feedback loop to

lock a signal generator’s frequency to a resonant “clock” frequency for an ensemble of Rb

atoms. In a real clock, the Rb atoms will rarely share the same clock frequency because light

shifts (and other shifts) differ spatially throughout the vapor cell. Surprisingly, this spread in

clock frequencies produces an out-of-phase (quadrature) error signal that can be used to lock

a laser to a magic wavelength.23 The simplest explanation of the interference phenomenon

producing this quadrature signal is available in Section 2.2.1 of my dissertation, Ref. 8. I

couldn’t resist including this topic because I suspect that similar interference phenomena

may also be present in other applications that use feedback to lock to resonances.
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