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1 Supplementary Methods

1.1 Parametrizing angular distributions

1.1.1 Anisotropy (or beta) parameters

We can represent the angular distribution of any physical intensity (or differential cross section) with the
expansion

I(θ, φ) ∝ 1 +

∞∑
l=1

l∑
m=0

Pm
l (cos θ)

[
βlm cos(mφ) + γlm sin(mφ)

]
(7)

in terms of real-valued “anisotropy” coefficients βlm and γlm, where γl0 ≡ 0. If there is no dependence
on φ the associated Legendre polynomials reduce to Legendre polynomials, P 0

l (cos θ) = Pl(cos θ), and the
remaining coefficients βl0 are conventionally denoted βl.
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If both atomic fragments of a dissociated homonuclear diatomic molecule are detected equally, then
conservation of momentum requires the inversion symmetry I(π− θ, φ+π) = I(θ, φ). The expansion (7) has
this symmetry if the coefficients with odd l are zero.

If the only nonzero coefficients are those with even l + m, then the expansion (7) will additionally be
symmetric under reflection across the equator, I(π − θ, φ) = I(θ, φ). For homonuclear diatomic molecules,
this symmetry requires the coefficients with odd m to be zero. Intensities without this symmetry display a
“skewness,” such as the asymmetry in Fig. 1(b) and several other figure insets that are likely due to imperfect
laser polarization or incomplete saturation correction during absorption imaging.

1.1.2 Partial scattering amplitudes

For our experiments, the measured intensity (or differential cross section) can be written as a sum of the
squared absolute values of complex scattering amplitudes for separate electronic channels,

I(θ, φ) =
∑
Ω

∣∣∣f{Ω}(θ, φ)
∣∣∣
2

, (8)

here indexed by the quantum number Ω for the internuclear projection of angular momentum.

To calculate the intensity, we compute the partial scattering amplitudes f
{Ω}
JM of a partial-wave expansion

of the scattering amplitude in terms of angular basis functions,

f{Ω}(θ, φ) =
∑
JM

f
{Ω}
JM ψ

{Ω}
JM (θ, φ), (9)

as described in Sec. 1.2.1. In terms of Wigner D-functions, we chose the angular basis functions to be

ψ
{Ω}
JM (θ, φ) =

√
2J + 1

4π
DJ∗

MΩ(φ, θ, 0), (10)

so that for Ω = 0 they are equivalent to spherical harmonics, ψ
{0}
JM (θ, φ) = YJM (θ, φ).

The expansion (7) is equivalent to Eq. (8) if we write the anisotropy coefficients as the real and imaginary
parts of a weighted sum over products of pairs of partial scattering amplitudes,

βlm + iγlm =
∑

Ω,J,J ′,M

Wlm(Ω, J, J ′,M) f
{Ω}∗
JM f

{Ω}
J ′,M−m

/ ∑
JMΩ

∣∣∣f{Ω}
JM

∣∣∣
2

. (11)

The real-valued weights may be written in terms of Wigner 3j symbols as

Wlm(Ω, J, J ′,M) = (−1)M−Ω 2[l]

1 + δm0

√
[J ][J ′](l −m)!

(l +m)!

(
J ′ l J

m−M −m M

)(
J ′ l J
−Ω 0 Ω

)
, (12)

where the shorthand [J ] ≡ 2J + 1 and δij is a Kronecker delta. As an aside, note that the quantities

ρ
{ΩJJ ′}
M,M−m = f

{Ω}∗
JM f

{Ω}
J ′,M−m

/∑
JMΩ

∣∣∣f{Ω}
JM

∣∣∣
2

in Eq. (11) have properties similar to density matrix elements.

From these weights Wlm and the properties of 3j symbols, the maximum value of l contributing in the

expansion (7) is limited to twice the largest value of J for which there is a nonzero f
{Ω}
JM . The maximum value

of m is limited by the furthest off-diagonal magnetic coherence, that is, the nonzero quantity f
{Ω}∗
JM f

{Ω}
J ′,M−m

with largest m = M −M ′.

1.2 Calculation of angular distributions

1.2.1 Theoretical description of photodissociation

The theory of photodissociation employed here follows the seminal work of Ref. [1]. The fragmentation
process is characterized by the differential cross section that is defined by Fermi’s golden rule with the
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electric-dipole (E1), magnetic-dipole (M1), or electric-quadrupole (E2) transition operators. Since we work
with a coupled manifold of electronic states for both the ungerade bound states and ungerade continuum,
we do not assume the Born-Oppenheimer approximation in contrast to Zare [1]. In this case the theory of
photodissociation for diatomic molecules is very similar to the non-degenerate atom-diatom case treated in
detail by Balint-Kurti and Shapiro [2, 3].

In the absence of external fields, the wave function of the initial (bound) state depends on the set of the
electronic coordinates {r} and on the vector R = (R,Θ,Φ) describing the relative motion of the nuclei, and
is given by

Ψpi

JiMi
({r},R) =

Ji∑
Ωi=−Ji

√
2Ji + 1

16π2(1 + δΩi0)

(
DJi�

MiΩi
(Φ,Θ, 0)ψpi

JiΩi
({r}, R) + σiD

Ji�
Mi,−Ωi

(Φ,Θ, 0)ψpi

Ji,−Ωi
({r}, R)

)
, (13)

where σi = pi(−1)Ji is the spectroscopic parity and Ji, Mi, and pi are the quantum numbers of the total
angular momentum, its projection on the space-fixed Z axis (previously denoted z), and the parity with
respect to space-fixed inversion. Note that in the above expression the quantum number πi related to the
action of the reflection in the body-fixed yz plane on the electronic coordinates does not appear. In our case
it is equal to zero, and the parity of the Ωi = 0 electronic states is always “+”.

In Hund’s case (c) the internal wave function ψpi

JiΩi
({r}, R) can be represented by the Born-Huang

expansion [4, 5]

ψpi

JiΩi
({r}, R) =

∑
n

φn,Ωi
({r};R)χpi

nJiΩi
(R). (14)

Here, the φn,Ωi
({r};R) are electronic wave functions, that is, the solutions of the electronic Schrödinger

equation including spin-orbit coupling, which depend parametrically on the interatomic distance R. The
χpi

nJiΩi
(R) are rovibrational wave functions. Finally, the index n labels all relativistic dissociation channels.

Note that for homonuclear diatomic molecules the electronic wave function has an additional gerade/ungerade
(g/u) symmetry resulting from the D∞h point group of the molecule. For simplicity we do not indicate the
g/u symmetry in the notation φn,Ωi

({r};R). The rovibrational wave functions are solution of a system of
coupled differential equations. See, for instance, Ref. [6] for the equations corresponding to the ungerade
excited manifold of the electronic states.

The wave function Ψ
pf

k ({r},R) of the final continuum state corresponding to the wave vector k = (k, θ, φ)
can be represented by the following expansion reflecting different partial waves J of the fragmented atoms,

Ψ
pf

k ({r},R) =
∑
JM

J∑
Ω=−J

J∑
Ω′=−J

(2J + 1)

4π
√
2π(1 + δΩ′0)

Cjp
mjΩ

DJ
MΩ(φ, θ, 0)D

J∗
mJΩ(φ, θ, 0)

×
(
DJ�

MΩ′(Φ,Θ, 0)ψ
Jpf

Ω′Ω({r}, R) + σiD
J�
M,−Ω′(Φ,Θ, 0)ψ

Jpf

−Ω′,Ω({r}, R)
)
, (15)

where j denotes the total angular momentum of the photofragmented atoms, mj is its projection in the

space-fixed Z axis, and p is the product of atomic parities. The numerical coefficients Cjp
mjΩ

depend on the

states of the photofragmented atoms and can be found in Ref. [7]. The internal wave function is given by
the following multichannel generalization of the Born-Huang expansion,

ψJpi

Ω′Ω({r}, R) =
∑
n

φn,Ω′({r};R)χ
Jpf

nΩ′Ω(R), (16)

where χ
Jpf

nΩ′Ω(R) is a radial channel function that satisfies the boundary condition

χ
Jpf

nΩ′Ω(R) ≈ R

√
2µk

π

(
δΩ′ΩjJ(kR) + S

Jpf

nΩ′ΩnJ(kR)
)

(for R −→ ∞) (17)
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in terms of the scattering matrix S
Jpf

nΩ′Ω. Here, µ is the reduced mass and jJ , nJ are spherical Bessel functions.
In this work we considered four different photofragmentation processes: (i) the E1 process starting from

the ungerade manifold of the electronic states that correspond to the 1S+ 3P 1 dissociation limit and ending
at the ground electronic continuum, (ii) the M1 and (iii) the E2 processes starting from the gerade manifold
corresponding to the same dissociation limit and ending at the ground electronic continuum, and finally (iv)
the E1 process starting from ground state molecules and ending at the ungerade manifold corresponding to
the 1S + 3P 1 dissociation limit.

The first three processes begin with manifolds that are described by two coupled electronic states: 0+u
and 1u for the E1 process and 0+g and 1g for the M1 and E2 processes. The corresponding wave functions
for the initial states are given by Eqs. (13) and (14) with the summation over Ωi limited to −1, 0, and 1,
and with n fixed to 1S + 3P 1. The wave function for the final continuum state, however, corresponds to the
Born-Oppenheimer approximation and is given by Eqs. (15) and (14) with only the Ω = 0 term and with
n fixed to 1S + 1S. Note that in the single-channel approximation Ω = Ω′, so for simplicity we denote the

rovibrational wavefunction by χ
Jpf

nΩ (R). The electronic transition operator for the E1 process was assumed
to be constant and proportional to the atomic value, while the operators for the M1 and E2 transitions
followed the asymptotic form of Refs. [8, 9]. Otherwise, the remaining derivation of the expression for the
differential cross section follows Ref. [1] and is not reproduced here, although the multichannel character of
the initial state wave functions complicates the angular momentum algebra.

Now we discuss the boundary condition for the final continuum rovibrational wave function χ
Jpf

nΩ (R).
The single-channel approximation is valid for the 0+g ground electronic continuum. In this case, at large
internuclear distances R the partial wave expansion (15) becomes [10]

χ
Jpf

nΩ (R) ≈ iJeiδJ

√
2µ

π�2k
sin(kR+ δJ + Jπ) (for R −→ ∞), (18)

where δJ is the phase shift for a given partial wave J . However, in practice it is more convenient to work
with real functions than with complex functions that satisfy this boundary condition. Therefore, we chose
to instead use the real-valued large-R boundary condition [10]

χ
Jpf

nΩ (R) ≈
√

2µ

π�2k
sin(kR+ δJ + Jπ) (for R −→ ∞), (19)

and to include the phase factor iJeiδJ in the partial scattering amplitudes.
Therefore, for the first three processes the differential cross section is given by Eq. (8) with Ω = 0. The

partial scattering amplitudes in the expansion (9) for this scattering amplitude are then given by

f
{Ω}
JM =

Ji∑
Ωi=−Ji

2iJeiδJ

√
4π(2Ji + 1)

(1 + δΩi0)(1 + δΩ0)
〈χpf

nkJΩ|T
L
Ω−Ωi

|χpi

nJiΩi
〉
(

J L Ji
−Ω Ω− Ωi Ωi

)(
J L Ji

−M M −Mi Mi

)
,

(20)

where TL
Ω−Ωi

is the electronic transition operator of rank L = 1 for E1 or M1 transitions and L = 2 for
E2 transitions for the experimental conditions described in Sec. 1.2.2. The anisotropy parameters in the
expansion (7) then follow from using these partial amplitudes with Eqs. (11) and (12).

The M1 and E2 processes were not observed separately because of selection rules. In this case, both
processes must be included and the observed cross section may be written as the sum

I(θ, φ) =
∣∣∣f{0}

JM,M1 + f
{0}
JM,E2

∣∣∣
2

, (21)

of separate scattering amplitudes (9) using Eq. (20). This expression explicitly allows for interference between
the M1 and E2 processes. Note that this interference may affect the angular distribution even if it does not
affect the strength of the transition, which is proportional to the integral of the differential cross section
over all angles. The strength curves in Fig. 3(b) were calculated this way, and were included in the figure
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by scaling their amplitudes together to better match experiment, while keeping their relative amplitudes
fixed by theory. Note that the experimental procedure used to produce the data in Fig. 3(b) is an imperfect
measure of the photodissociation lineshape, so the comparison with theory is qualitative.

Finally, for the fourth process of photofragmentation beginning with ground state molecules and ending
at the 1S + 3P 1 continuum, the wave function of the initial (bound) state satisfies the Born-Oppenheimer
approximation. Therefore we set Ωi = 0 in Eq. (13) and limit the Born-Huang expansion (14) to a single
product. However, the partial wave expansion (15) for the final continuum must explicitly account for the
Coriolis coupling between the 0+u and 1u electronic states, and for the angular momentum j = 1 and total
parity p = −1 of the atomic fragments. For this multichannel continuum case, we imposed the complex
boundary conditions of Eq. (17). The remaining derivation of the expression for the differential cross section
follows Refs. [11, 2, 3, 12]. The differential cross section I(θ, φ) then follows from Eqs. (8) and (9) using the
partial scattering amplitudes

f
{Ω}
JM =

Ji∑
Ωi=−Ji

Ji∑
Ω′=−Ji

2

√
4π(2Ji + 1)

(1 + δΩi0)(1 + δΩ′0)
〈χJpf

nΩ′Ω|T
L
Ω′−Ωi

|χpi

nJiΩi
〉
(

J j Ji
−Ω′ Ω′ − Ωi Ωi

)(
J j Ji

−M M −Mi Mi

)
.

(22)

1.2.2 Field components for the experimental conditions

For E1 transitions in our experiment, the lab-frame spherical tensor components of the field driving the
transition are

T 1
0 (E) = Ez (23)

T 1
±1(E) = − i√

2
Ey, (24)

using the notation of Ref. [13]. For linear polarization parallel to the z axis, which is labeled “p = 0” in
Fig. 4, Ey = 0. For linear polarization along the y axis, which is labeled “|p| = 1” in Fig. 4, Ez = 0. Likewise,
for M1 transitions these components are

T 1
0 (B) = Bz (25)

T 1
±1(B) = − i√

2
By. (26)

Note that in Fig. 3 “p = 0” now corresponds to linear polarization along the y axis, such that By = 0, and
“|p| = 1” to linear polarization parallel to the z axis, such that Bz = 0. For electric E2 transitions, these
components are

T 2
0 (∇E) = 0 (27)

T 2
±1(∇E) = ∓1

2
(ikEz) (28)

T 2
±2(∇E) = ± i

2
(ikEy) (29)

for traveling-wave light propagating along the x axis with wavenumber k [14].
For θ and φ defined as in Fig. 1, these experimental conditions produce angular distributions that can

be described only with βlm coefficients in the expansion (7), leading to the simplified form of Eq. (2).

1.2.3 Energy independent angular distributions

For 88Sr2 photodissociation, there are a few cases where the angular distributions are independent of the
continuum energy. For E1 photodissociation to the ground continuum (where symmetry restricts J to even
values) this occurs if Ji is even because ∆J = 0,±1. This also occurs with odd Ji for either |Mi| = Ji
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with p = 0 or Ji = 1 and Mi = 0 with |p| = 1, because selection rules only allow a single value of J in the
continuum. For M1/E2 photodissociation to the ground continuum from Ji = 1, Mi = 0, this occurs when
the dissociation laser is linearly polarized along the z axis, because of ∆M selection rules. In these cases,
the energy-dependent radial integrals in Eq. (20) are common to all partial scattering amplitudes, so the
angular distributions are independent of the continuum energy. They are also relatively simple to calculate,
because they reduce to evaluating geometrical factors.

1.2.4 Single-J approximation for angular distributions

In a similar fashion, Eqs. (20) and (22) can be used to explore what range of angular distributions may
occur in an experiment by making simplifying assumptions about the radial integrals. For example, for E1
photodissociation to the ground continuum we could approximate the radial matrix elements in Eq. (20) to
be nonzero only for a single J but multiple M , such that

f
{Ω}
JM ∝ TL

M−Mi
(E)

(
J L Ji

−M M −Mi Mi

)
, (30)

where TL
M−Mi

(E) are the lab-frame spherical tensor components of the dissociating field, as described in
Sec. 1.2.2 for our experimental conditions. For a selected initial state, the calculation of the angular distri-
bution simplifies to evaluating geometrical factors that depend only on the allowed quantum numbers.

In addition to energy-independent cases, this approximation works well for the energy-dependent data
in Fig. 4 with odd Ji, because the continuum energies were chosen so that a single J was responsible for
most of each angular distribution: J = 4 for Ji = 3, 4 and J = 2 for Ji = 1, 2. This approximation also
explains some interesting properties that we observe. For example, the (Mi = 0, |p| = 1) cases are identical
except for a 90◦ rotation in φ, which corresponds to alternating the sign of the βl2 parameters with Ji. For
Mi �= 0, a qualitatively similar rotation often occurs. Finally, for |p| = 1 the cases of |Mi| = J have the
same coefficients as those of p = 0 for |Mi| = J − 1, since they produce the same single sublevels M in the
continuum.

1.3 Parameters for theoretical images in figures

Supplementary Tables 1, 2, and 3 list the parameters used to generate the theoretical images shown in Fig. 4
and Extended Data Figs. 1–3.

2 Supplementary Tables

Supplementary Table 1: Parameters βlm of the theoretical images in Extended Data Fig. 1 for the p = 0
case of M1/E2 photodissociation of 1g(vi = −1, Ji = 1,Mi = 0).

ε/h (MHz) β20 β22 β40 β42 β44

4 0.4178 −0.3599 0.1095 −0.01290 0.002280
8 0.2475 −0.3563 0.3077 −0.03626 0.006409
12 −0.06407 −0.2117 0.4362 −0.05140 0.009087

Supplementary Table 2: Parameters βlm of the theoretical images in Fig. 4 and Extended Data Fig. 2 for E1
photodissociation of 1u(vi = −1, Ji,Mi). Values for odd Ji that depend on the continuum energy ε (given
below in MHz) are rounded to four significant figures. However, the energies for odd Ji were chosen so that
Eq. (30) with J = Ji + 1 is a good approximation. Fig. 4 uses the values from this approximation, which
are given on a second line as fractions. Extended Data Fig. 2 uses the unapproximated values. For even
Ji, the values are independent of the continuum energy. Where the transition is forbidden by symmetry
(pi = Mi = 0, even Ji), the experimental pattern is enabled by an applied magnetic field that admixes
excited states [15] such that the parameters correspond to the approximation (30) with the substitution
Ji −→ Ji ± 1. Omitted values are zero because of symmetry.

Ji |Mi| ε/h β20 β22 β40 β42 β60 β62 β80 β82

|p| = 1

4 0 76 85/77 25/77 729/1001 81/1001 −1/11 1/22 −392/143 7/143
4 1 74 1360/1463 450/1463 6561/19019 81/1729 2/209 0 6664/2717 −105/2717
4 2 71 65/154 45/176 −243/728 −81/2288 5/8 −9/176 −245/143 21/1144
4 3 68 −40/121 20/121 −243/1573 −162/1573 −170/121 4/121 1400/1573 −7/1573
4 4 — −5/11 0 −243/143 0 17/11 0 −56/143 0
3 0 71 0.3097 −0.3909 0.3584 −0.05354 0.8934 −0.009862 −2.561 −0.04574

85/77 −25/77 729/1001 −81/1001 −1/11 −1/22 −392/143 −7/143
3 1 71 0.1445 −0.2850 −0.1389 −0.01507 −1.653 −0.007708 1.816 0.03244

400/539 −150/539 −1539/7007 −27/637 −10/11 0 280/143 5/143
3 2 72 −0.4966 −0.1545 −1.515 0.02140 1.633 0.03091 −0.6213 −0.01110

−20/77 −15/88 −5589/4004 27/1144 59/44 3/88 −98/143 −7/572
3 3 72 −1.835 −0.05559 1.208 0.03464 −0.4569 −0.01112 0.08381 0.001497

−3880/2233 −20/319 30861/29029 162/4147 −134/319 −4/319 392/4147 7/4147
2 0 52 5/7 5/14 −12/7 1/7
2 1 48 2/7 2/7 12/7 −3/35
2 2 44 5/7 0 −12/7 0
1 0 32 5/7 −5/14 −12/7 −1/7
1 1 31 −0.3445 −0.1311 0.1921 0.01601

−50/49 −10/49 36/49 3/49

p = 0

4 0 77 100/77 1458/1001 20/11 490/143
4 1 78 85/77 729/1001 −1/11 −392/143
4 2 71 40/77 −81/91 −2 196/143
4 3 68 −5/11 −243/143 17/11 −56/143
4 4 — −20/11 162/143 −4/11 7/143
2 0 56 10/7 18/7
2 1 55 5/7 −12/7
2 2 44 −10/7 3/7
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Supplementary Table 1: Parameters βlm of the theoretical images in Extended Data Fig. 1 for the p = 0
case of M1/E2 photodissociation of 1g(vi = −1, Ji = 1,Mi = 0).

ε/h (MHz) β20 β22 β40 β42 β44

4 0.4178 −0.3599 0.1095 −0.01290 0.002280
8 0.2475 −0.3563 0.3077 −0.03626 0.006409
12 −0.06407 −0.2117 0.4362 −0.05140 0.009087

Supplementary Table 2: Parameters βlm of the theoretical images in Fig. 4 and Extended Data Fig. 2 for E1
photodissociation of 1u(vi = −1, Ji,Mi). Values for odd Ji that depend on the continuum energy ε (given
below in MHz) are rounded to four significant figures. However, the energies for odd Ji were chosen so that
Eq. (30) with J = Ji + 1 is a good approximation. Fig. 4 uses the values from this approximation, which
are given on a second line as fractions. Extended Data Fig. 2 uses the unapproximated values. For even
Ji, the values are independent of the continuum energy. Where the transition is forbidden by symmetry
(pi = Mi = 0, even Ji), the experimental pattern is enabled by an applied magnetic field that admixes
excited states [15] such that the parameters correspond to the approximation (30) with the substitution
Ji −→ Ji ± 1. Omitted values are zero because of symmetry.

Ji |Mi| ε/h β20 β22 β40 β42 β60 β62 β80 β82

|p| = 1

4 0 76 85/77 25/77 729/1001 81/1001 −1/11 1/22 −392/143 7/143
4 1 74 1360/1463 450/1463 6561/19019 81/1729 2/209 0 6664/2717 −105/2717
4 2 71 65/154 45/176 −243/728 −81/2288 5/8 −9/176 −245/143 21/1144
4 3 68 −40/121 20/121 −243/1573 −162/1573 −170/121 4/121 1400/1573 −7/1573
4 4 — −5/11 0 −243/143 0 17/11 0 −56/143 0
3 0 71 0.3097 −0.3909 0.3584 −0.05354 0.8934 −0.009862 −2.561 −0.04574

85/77 −25/77 729/1001 −81/1001 −1/11 −1/22 −392/143 −7/143
3 1 71 0.1445 −0.2850 −0.1389 −0.01507 −1.653 −0.007708 1.816 0.03244

400/539 −150/539 −1539/7007 −27/637 −10/11 0 280/143 5/143
3 2 72 −0.4966 −0.1545 −1.515 0.02140 1.633 0.03091 −0.6213 −0.01110

−20/77 −15/88 −5589/4004 27/1144 59/44 3/88 −98/143 −7/572
3 3 72 −1.835 −0.05559 1.208 0.03464 −0.4569 −0.01112 0.08381 0.001497

−3880/2233 −20/319 30861/29029 162/4147 −134/319 −4/319 392/4147 7/4147
2 0 52 5/7 5/14 −12/7 1/7
2 1 48 2/7 2/7 12/7 −3/35
2 2 44 5/7 0 −12/7 0
1 0 32 5/7 −5/14 −12/7 −1/7
1 1 31 −0.3445 −0.1311 0.1921 0.01601

−50/49 −10/49 36/49 3/49

p = 0

4 0 77 100/77 1458/1001 20/11 490/143
4 1 78 85/77 729/1001 −1/11 −392/143
4 2 71 40/77 −81/91 −2 196/143
4 3 68 −5/11 −243/143 17/11 −56/143
4 4 — −20/11 162/143 −4/11 7/143
2 0 56 10/7 18/7
2 1 55 5/7 −12/7
2 2 44 −10/7 3/7
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Supplementary Table 3: Parameters βlm of the theoretical images in Extended Data Fig. 2 and 3 for E1
photodissociation of 0+u (vi, Ji,Mi), with vi = −3 for Ji = 3 and vi = −4 for Ji = 1. Only odd Ji are allowed
by symmetry. The values that depend on the continuum energy ε (given below in MHz) are rounded to four
significant figures. However, as in Supplementary Table 2, the energies were chosen so that Eq. (30) with
J = Ji + 1 is a good approximation. Extended Data Fig. 3 uses these approximate values, which are given
on a second line as fractions below. Extended Data Fig. 2 uses the unapproximated values. Omitted values
are zero because of symmetry.

Ji |Mi| ε/h β20 β22 β40 β42 β60 β62 β80 β82

|p| = 1

3 0 72 0.5258 −0.3728 0.4946 −0.05980 0.6317 −0.01999 −2.652 −0.04736
85/77 −25/77 729/1001 −81/1001 −1/11 −1/22 −392/143 −7/143

3 1 71 0.3251 −0.2842 −0.2059 −0.02529 −1.437 −0.005318 1.893 0.03381
400/539 −150/539 −1539/7007 −27/637 −10/11 0 280/143 5/143

3 2 70 −0.4253 −0.1640 −1.463 0.02271 1.548 0.03281 −0.6596 −0.01178
−20/77 −15/88 −5589/4004 27/1144 59/44 3/88 −98/143 −7/572

3 3 69 −1.801 −0.06003 1.161 0.03740 −0.4509 −0.01201 0.09050 0.001616
−3880/2233 −20/319 30861/29029 162/4147 −134/319 −4/319 392/4147 7/4147

1 0 33 5/7 −5/14 −12/7 −1/7
1 1 32 −0.4751 −0.03716 0.3941 0.03284

−50/49 −10/49 36/49 3/49

p = 0

3 0 72 2.131 2.272 3.022 3.223
100/77 1458/1001 20/11 490/143

3 1 73 1.861 0.7914 −1.079 −2.573
85/77 729/1001 −1/11 −392/143

3 2 74 0.9400 −1.677 −1.561 1.298
40/77 −81/91 −2 196/143

3 3 75 −5/11 −243/143 17/11 −56/143
1 0 33 0.4265 1.035

10/7 18/7
1 1 32 5/7 −12/7
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