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Experimental and theoretical investigation of the crossover from the ultracold
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At ultralow energies, atoms and molecules undergo collisions and reactions that are best described in terms
of quantum-mechanical wave functions. In contrast, at higher energies these processes can be understood
quasiclassically. Here, we investigate the crossover from the quantum-mechanical to the quasiclassical regime
both experimentally and theoretically for photodissociation of ultracold diatomic strontium molecules. This
basic reaction is carried out with a full control of quantum states for the molecules and their photofragments.
The photofragment angular distributions are imaged and calculated by using a quantum-mechanical model as
well as the Wenzel–Kramers–Brillouin approximation and a semiclassical approximation that are explicitly
compared across a range of photofragment energies. The reaction process is shown to converge to its high-
energy (axial-recoil) limit when the energy exceeds the height of any reaction barriers. This phenomenon
is quantitatively investigated for two-channel photodissociation by using intuitive parameters for the channel
amplitude and phase. While the axial-recoil limit is generally found to be well described by a commonly
used quasiclassical model, we find that when the photofragments are identical particles, their bosonic or
fermionic quantum statistics can cause this model to fail, requiring a quantum-mechanical treatment even at high
energies.
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I. INTRODUCTION

Low-temperature atomic and molecular collisions and
reactions are qualitatively different from their high-energy
counterparts. While the latter can usually be explained
quasiclassically, the former are strongly influenced by the
wave nature of the particles and are correctly described only
with quantum-mechanical wave functions. In addition, at
very low temperatures, precise control of internal molecular
states is possible, permitting studies of state-specific reaction
cross sections rather than statistical averages. Ultracold,
quantum-mechanical chemistry has many distinguishing
features such as reaction-barrier tunneling, quantum
interference, and possibilities for controlling the outcome
with applied electric or magnetic fields [1]. On the other
hand, a quasiclassical interpretation can offer intuitive insight
into complicated processes.

In particular, photodissociation [2–4] has been extensively
used to study the nature of molecular bonding, which becomes
encoded in angular distributions of the outgoing photofrag-
ments. It is one of the most basic chemical processes and
is highly amenable to quantum state control of the outgoing
particles, since the reaction proceeds without a collision.
The majority of photodissociation experiments to date have
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been carried out in a regime that is well described in the
quasiclassical framework [5–8], while recently we studied
this reaction in the purely quantum regime to observe matter-
wave interference of the photodissociation products [9] and
control of the reaction by weak magnetic fields [10]. In
this work, we show that the photodissociation energy can
be tuned by several orders of magnitude to span the range
from the quantum-mechanical to the quasiclassical regime.
Experimentally and theoretically we demonstrate how the
crossover occurs and what determines its energy scale. We
also find that, if the photofragments are identical bosonic or
fermionic particles, then the reaction outcome is not always
well described in quasiclassical terms even at high ener-
gies and the effects of quantum statistics can persist indef-
initely. Moreover, we apply the Wenzel–Kramers–Brillouin
(WKB) approximation to photodissociation, as well as a re-
lated semiclassical approximation, and discuss how accurately
they capture the transition from ultracold to quasiclassical
behavior.

In the experiment, we trap diatomic strontium molecules
(88Sr2) at a temperature of a few microkelvin, enabling precise
manipulation and preparation of specific quantum states as
the starting point for photodissociation. The photodissociation
laser light has strictly controlled frequency and polarization,
yielding photofragments in fully defined quantum states. The
ab initio theory is aided by a state-of-the-art molecular model
[11,12] that captures the effects of nonadiabatic mixing and
yields excellent agreement with spectroscopic measurements
[13–16].

This approach offers a unique possibility to finely scan a
large range of energies that is relevant to the crossover from
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distinctly quantum-mechanical to quasiclassical photodissoci-
ation. Since the initial molecular states have low angular mo-
menta, the relevant dynamics occurs at very low, millikelvin
energies. The experiment can sample energies from ∼0.1 mK
limited by the molecule trap depth to ∼100 mK limited
by the available laser intensity that is needed to overcome
the diminishing photodissociation transition strengths. The
rotational and electronic potential barriers that are explored
in this work and in the companion paper [17] fall within
this range, permitting direct observations of the crossover.
We reduce the process to a single initial molecular state and
two angular-momentum product channels, in which case the
quantum mechanics of the reaction can be encoded in a single
pair of coefficients: the amplitude and phase of the channel
interference.

Note that in both quantum and quasiclassical regimes we
work with single initial quantum states. The classical nature
of the process emerges not because of statistical averages
over the initial states, but when the kinetic energies of the
photofragments are large. At high energies, the photodissoci-
ation timescale is much faster than the timescale of molecular
rotations, and the molecules can be described as classical
rotors. An equivalent view is that the photodissociation out-
come should have quasiclassical behavior if the photofrag-
ment energy in the continuum exceeds the height of any
potential barriers. This regime is referred to as axial recoil,
where the molecule has insufficient time to rotate during
photodissociation and the photofragments emerge along the
instantaneous direction of the bond axis. Here we investigate
at what energies the axial-recoil regime is reached, whether it
is accurately described by the quasiclassical model, and how
its onset depends on the molecular binding energy and angular
momentum.

In Sec. II of this work, we describe the photodissoci-
ation experiment and show the measured and calculated
photofragment angular distributions. In Sec. III, we discuss
the quantum-mechanical photodissociation cross section used
in calculating the angular distributions, its axial-recoil limit,
and the quasiclassical model. Section IV details the crossover
from the ultracold to the quasiclassical regime for a range of
molecular binding energies and angular momenta and shows
the onset of the axial-recoil limit at energies that exceed the
potential barriers in the continuum. In Sec. V we discuss the
breakdown of the quasiclassical picture of photodissociation
in case of identical photofragments and present the correct
high-energy limit that takes quantum statistics into account.
We summarize our conclusions in Sec. VI.

II. THE PHOTODISSOCIATION EXPERIMENT

The starting point for the experiment is creation of ∼7000
weakly bound ultracold 88Sr2 molecules in the electronic
ground state. This is accomplished by laser cooling, trapping,
and photoassociating Sr atoms in a far-off-resonant optical
lattice [18]. Subsequently, optical selection rules allow spe-
cific molecular quantum states to be populated and serve as a
starting point for photodissociation.

Figure 1 shows the photodissociation experiment from the
point of view of molecular potentials and wave functions. The
ground-state gerade potential X0+

g correlates to the 1S + 1S

J = 0

J = 2

V 
(

)

FIG. 1. Molecular potentials for the 88Sr2 electronic states used
in this work. The ground state X0+

g correlates to the 1S + 1S atomic
threshold while the excited states 0+

u and 1u correlate to 1S + 3P 1.
The 1u potential has a ∼1 mK electronic barrier. The molecules are
photodissociated via an electric-dipole optical transition from bound
states of mostly 0+

u or 1u character to the ground-state continuum.
A range of rovibrational initial states are explored. In this example,
weakly bound 0+

u (v = −2, Ji = 1, Mi = 0) molecules are photodis-
sociated, and the photofragments occupy two allowed partial waves
J = {0, 2} shown at the energy of 50 MHz (2.4 mK).

atomic threshold, while the singly excited ungerade potentials
0+

u and 1u correlate to 1S + 3P1, where the 0 and 1 state labels
correspond to �, the projection of the total atomic angular
momentum onto the molecular axis. Weakly bound ground-
state molecules are excited to 0+

u and 1u bound states with
a laser pulse, and the resulting molecules are immediately
photodissociated to the ground-state continuum. The bound
states are labeled by their vibrational quantum number v (neg-
ative numbers count down from the threshold), total angular
momentum J , and its projection M onto the quantization axis
that is set by a small vertical magnetic field. In Fig. 1, the
0+

u (v = −2, Ji = 1,Mi = 0) molecules are photodissociated
by 689 nm light. Here the allowed angular-momentum states,
or partial waves, in the continuum are J = {0, 2} due to
electric-dipole selection rules as well as the bosonic nature
of 88Sr that allows only even J values in the ground state of
the homonuclear dimer.

The photodissociation laser light copropagates with the lat-
tice light and both are focused to a 30 μm waist at the molec-
ular cloud. A broad imaging beam, resonant with the strong
461 nm transition in atomic Sr, nearly copropagates with the
lattice and is directed at a charge-coupled device camera that
collects absorption images of the photofragments. A typical
experiment uses ∼10 μs long photodissociation laser pulses,
∼100 μs of free expansion, and ∼10 μs absorption imaging
pulses [17]. Several hundred images are averaged in each
experiment.

The experimental and theoretical results of photodissociat-
ing the molecules in a range of precisely prepared quantum
states are shown in Fig. 2. In this set of measurements, light
polarization is along the quantization axis and the molecules
start from Ji = 1, Mi = 0. In Fig. 2(a), molecules in vibra-
tional states v = {−2,−3,−4,−5} of 0+

u are photodissoci-
ated. The photofragment angular distributions show a strong
energy dependence, and a less pronounced dependence on

043404-2



EXPERIMENTAL AND THEORETICAL INVESTIGATION OF … PHYSICAL REVIEW A 98, 043404 (2018)

0 u+ 
(-2

,1
,0

)
0 u+ (-

3,
1,

0)
0 u+ (-

4,
1,

0)
0 u+ (-

5,
1,

0)

ε/h = 13 MHz 33 53 100 300
(a)

W
KB

1 u(
-1

,1
,0

)
1 u(

-2
,1

,0
)

(b)

W
KB

10
00

 M
Hz

0u
+(-2,1,0)

quantum
WKB 0u

+ Axial recoil 
limit

1u(-2,1,0)
quantum

10
00

 M
Hz

WKB 1u
Axial recoil 

limit

(c)

13 33 53 100 300

0

1

Sr
de

ns
ity

 (n
or

m
.)

FIG. 2. Measured and calculated photofragment angular distributions in the ultracold quantum-mechanical regime and in the high-energy
axial-recoil limit. (a) The 0+

u initial states are explored at the continuum energies ε/h = {13, 33, 53, 100, 300} MHz (ε/kB = 0.6–14 mK).
For each initial state, the upper and lower rows correspond to measurements and quantum-mechanical theory, respectively. The ab initio
images were adjusted for the shell size and thickness in experimental data, where the photofragment ring diameter is typically 0.3–0.5 mm.
The strong dependence of the patterns on ε and the less pronounced dependence on v are discussed in the text. The bottom row shows
v-independent distributions obtained with the WKB approximation. The most weakly bound state exhibits a central dot that arises from
spontaneous photodissociation into the optical lattice; these are more apparent at higher energies where the signal is weaker and can be
ignored. (b) Same as in panel (a), for 1u initial molecular states. (c) Angular distributions calculated for a pair of 0+

u and 1u weakly bound
states using both quantum theory and the WKB approximation at a high energy ε/h = 1000 MHz (ε/kB = 48 mK), to show their close
agreement with the appropriate axial-recoil limit.

v except for the most weakly bound levels, as discussed in
Sec. IV A. The bottom row of images is calculated with the
WKB approximation, which is independent of v and described
in Sec. IV B. Figure 2(b) is analogous to Fig. 2(a) but illus-
trates the 1u initial states. A good agreement between mea-
surements and quantum-mechanical calculations is reached
for all initial states and continuum energies. Figure 2(c) shows
agreement between quantum theory and the WKB approxi-
mation at the continuum energy ε/h = 1000 MHz (ε/kB =
48 mK) where h = 2πh̄ and kB are the Planck and Boltzmann

constants. At this high energy, both methods approach the
axial-recoil limit which is also shown.

III. PHOTOFRAGMENT ANGULAR DISTRIBUTIONS

Sections III A–III E overview the quantum-mechanical cal-
culation and parametrization of the photodissociation cross
section both in the low-energy regime and in the high-energy
axial-recoil limit, as well as the correspondence of the latter
to the quasiclassical approximation.
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A. General quantum-mechanical model

The general quantum-mechanical expression for the pho-
todissociation cross section is based on Fermi’s golden rule
with the electric-dipole (E1) transition operator,

σQM(θ, φ) ∝ ∣∣〈�JM
k ({r},R)

∣∣T̂ 1
E1

∣∣�JiMi�i
({r},R)

〉∣∣2
, (1)

where {r} is the set of atomic electronic coordinates, R is
the vector connecting the photofragments, k is the laboratory-
frame wave vector of the photofragments, �JM

k is the final
(continuum) wave function, and �JiMi�i

is the initial (bound)
wave function. The polar and azimuthal angles {θ, φ} are
referenced to the quantization axis.

Assuming a pure initial state |JiMi�i〉, expanding the
bound and continuum wave functions into the products of
their electronic, rovibrational, and angular parts, integrating
over the rotation angles and summing over M transforms
Eq. (1) into

σQM(θ, φ)

∝
∑
�k

∣∣∣∣∣∣
∑

Jk (Mk )PQnk

(−1)Mk+�k (2Jk + 1)DJk

Mk�k
(φ, θ, 0)

×
(

Jk 1 Ji

−Mk P Mi

)(
Jk 1 Ji

−�k Q �i

)

× 〈
χ

Jk

nk�k
(R)

∣∣dBF

∣∣χniJi�i
(R)

〉
∣∣∣∣∣∣
2

, (2)

where χn(R) are the rovibrational wave functions indexed
by all the relativistic electronic channels that are included in
the model, dBF is the body-fixed E1 transition operator, Jk

are the indexed continuum angular momenta (also referred
to simply as partial waves J ), DJ

M� are Wigner rotation
matrices, and Q = �k − �i (a photodissociation transition is
called parallel if Q = 0 and perpendicular if |Q| = 1). The
polarization index P = 0 or P = ±1 if the photodissociation
light is polarized along or perpendicularly to the quantization
axis, respectively (such that P = Mk − Mi).

B. Axial-recoil approximation

At low photofragment energies, to obtain the correct pho-
todissociation cross sections, it is crucial to calculate the
matrix elements 〈χJk

nk�k
(R)|dBF|χniJi�i

(R)〉 in Eq. (2). At high
energies, these matrix elements become independent of Jk

[7] and can be simply factored out. This is equivalent to dis-
regarding the photodissociation dynamics. Under this axial-
recoil approximation, the photodissociation cross section (2)
reduces to

σ (θ, φ)AR ∝
∑
Q

∣∣∣∣∣∣
∑
JkP

(−1)Mk+�k (2Jk + 1)DJk

Mk�k
(φ, θ, 0)

×
(

Jk 1 Ji

−Mk P Mi

)(
Jk 1 Ji

−�k Q �i

)∣∣∣∣∣∣
2

.

(3)

C. Two-parameter quantum-mechanical model

Consider the photodissociation of 0+
u (v, Ji,Mi ) molecules

to the ground-state continuum with P = 0. For odd Ji (which
are the only allowed angular momenta in 0+

u due to quantum
statistics), the allowed angular momenta of the photofrag-
ments are J = Ji − 1 and Ji + 1, while M = Mi . Then the
quantum-mechanical photofragmentation cross section can be
expressed by using only two parameters, the channel ampli-
tude squared R and the relative channel phase δ:

σRδ (θ, φ) ∝ ∣∣√RYJi−1,Mi
(θ, φ)

+ (−1)�i eiδ
√

1 − RYJi+1,Mi
(θ, φ)

∣∣2
. (4)

The (−1)�i factor correctly connects the sign of the δ param-
eter to the phase shift between the continuum wave functions,
and YJM are spherical harmonics which are proportional to the
angular wave functions for � = 0.

The expression for the R parameter can be derived by
comparing Eq. (4) to the traditional cross section (2). We
obtain

R =
∣∣∣∣
√

2Ji − 1

(
Ji − 1 1 Ji

−Mk P Mi

)(
Ji − 1 1 Ji

0 −�i �i

)〈
χ

J=Ji−1
nk�k

(R)
∣∣dBF

∣∣χniJi�i
(R)

〉∣∣∣∣
2

×
⎡
⎣ ∑

Jk={Ji−1,Ji+1}

∣∣∣∣
√

2Jk + 1

(
Jk 1 Ji

−Mk P Mi

)(
Jk 1 Ji

−�k Q �i

)〈
χ

Jk

nk�k
(R)

∣∣dBF

∣∣χniJi�i
(R)

〉∣∣∣∣
2
⎤
⎦

−1

. (5)

The δ parameter is calculated as the phase shift difference for
the continuum wave functions, δ = δJi+1 − δJi−1.

In the axial-recoil limit, Eq. (5) is simplified by set-
ting the matrix elements to a constant and canceling them,
as explained in Sec. III B. This results in values of R

that approach 0.5 with increasing Ji , while the phase
shifts become identical: δJi+1 → δJi−1, yielding δ → 0 and
cos δ → 1.

D. Quasiclassical model

The commonly used quasiclassical model for photofrag-
ment angular distributions [5,6] describes the photodissocia-
tion cross section as

σQC(θ, φ) ∝ Pi (θ, φ)[1 + β2P2(cos θ )], (6)

where Pi (θ, φ) = |DJi

Mi�i
(φ, θ, 0)|2 is the probability density

of the initial molecular orientation. The anisotropy parameter
is β2 = 2 for parallel photodissociation transitions (Q = 0)
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and β2 = −1 for perpendicular transitions (|Q| = 1). If the
molecule is in a superposition of |JiMi�i〉 states, the initial
probability density can be generalized as [8]

Pi (θ, φ) =
∑

JiJ
′
i MiM

′
i�i

D
Ji

Mi�i
(φ, θ, 0)D

J ′
i 


M ′
i�i

(φ, θ, 0). (7)

Note that, in Eq. (7), there are no cross terms for �i . The
intuition behind Eq. (6) is that the photofragment angular
distribution follows the initial angular density of the molecule,
modified by the angular probability density of the photon
absorption.

E. Correspondence of quasiclassical model
to axial-recoil approximation

It was shown in Ref. [7] that, for photodissociation light
polarized along the quantization axis, Eq. (3) reduces to
σAR(θ, φ) ∝ |DJi

Mi�i
|2[1 + β2P2(cos θ )] for initial states with

a single �i [8]. We have confirmed that this result also holds
for other polarizations of the photodissociating light [if the
light polarization is perpendicular to the quantization axis,
P2(cos θ ) should be replaced with P2(sin θ sin φ)].

Therefore, the quasiclassical model (6) can be applied in
the axial-recoil limit to obtain angular-distribution predictions
that are identical to those of the quantum-mechanical model.
However, an important assumption in Refs. [7,8] is that the
photofragments are not identical quantum particles. Devia-
tions from this assumption are discussed in Sec. V.

IV. CROSSOVER FROM ULTRACOLD REGIME
TO AXIAL-RECOIL LIMIT

We investigate the crossover from the ultracold quantum-
mechanical to the high-energy axial-recoil regime of
photodissociation, as observed in Fig. 2. The intuitive
parametrization of Eq. (4) that accurately illustrates two-
channel photodissociation allows us to study the crossover as
it applies to only two parameters, R and δ. These parameters
can have a strong energy dependence in the ultracold regime
while approaching their axial-recoil values at higher energies.
In this section, we address the following questions: At what
energy scale does the outcome of photodissociation approach
the axial-recoil limit? How does this energy scale depend
on the molecular binding energy (or vibrational level) and
rotational angular momentum? How well do the WKB and
semiclassical approximations model this crossover?

A. Approaching the axial-recoil limit: Channel amplitude

The R parameter from Eq. (4) depends on both the bound
and continuum wave functions, as can be explicitly seen from
Eq. (5). Therefore, its behavior as a function of continuum
energy can depend on the vibrational state of the molecule,
potentially influencing the energy scale at which the axial-
recoil limit is reached based on the molecular binding energy.
The plots in Fig. 3(a) show the R parameter for several
weakly bound initial states 0+

u (v, Ji = 1,Mi = 0) with v =
{−2,−3,−4,−5} as well as for the most deeply bound state
v = 0. The dashed line indicates the axial-recoil limit.

ε/h (MHz)

R

(a)

(b)

V 
(r

)
r (units of a0)

J = 0

J = 2

v = -2v = -3

v = -5

v = 0

v = -4

FIG. 3. (a) Quantum-mechanical calculation of the amplitude-
squared R parameter for two-channel photodissociation as in Eq. (4).
The initial molecular state is 0+

u (v, 1, 0) with v = {−2, −3, −4, −5},
and P = 0. For comparison, the most deeply bound v = 0 state
is also shown. The axial-recoil limit is indicated with a dashed
line. (b) The allowed continuum wave functions with J = {0, 2} are
plotted for very low energy ε/h = 0.5 MHz (ε/kB = 24 μK). The
negligible contribution of the J = 2 partial wave due to its repulsive
rotational barrier explains why R = 1 as ε → 0 in panel (a) and thus
only the lowest allowed partial wave is populated in near-threshold
photodissociation.

For some of the shallow vibrational levels such as v =
−2,−3 (bound by ∼102 MHz) the R parameter shows a
strong energy dependence that does not closely resemble that
of more deeply bound states, as is also observed in Fig. 2. This
is caused by the large spatial extent (�100 bohr) of weakly
bound wave functions, as illustrated for the 0+

u (−2, 1, 0) wave
function in Fig. 1. The continuum wave functions, as also
shown in Fig. 1, are similar at small internuclear separations
but undergo a relative phase shift at larger distances that
correspond to the bond length in initially very weakly bound
molecules. This can prevent photodissociation from reaching
quasiclassical behavior at the expected energies. The energy
dependencies for v = −4,−5 (bound by ∼103 MHz) are
more regular, and we find that all the deeper vibrational levels
starting from v = −10 (bound by ∼105 MHz) exhibit nearly
identical behavior illustrated in Fig. 3(a) by the deepest v = 0
level (bound by ∼108 MHz). We conclude that, with the
exception of asymptotic molecules that are bound just below
threshold, the R parameter is independent of the vibrational
quantum number. Since the δ parameter is v independent
as discussed in Sec. IV B, the expected anisotropy patterns
are nearly independent of v or the binding energy. We have
checked that, for higher initial angular momenta Ji , the R
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parameter is also independent of v except for the most weakly
bound molecules.

It is clear from Fig. 3(a) that R → 1 as ε → 0, indicating
that the lowest partial wave (J = 0 in this case) dominates the
photofragment distribution at ultralow energies. This is caused
by the suppression of low-energy continuum wave functions
with higher angular momenta at relevant internuclear separa-
tions due to their rotational barriers. Figure 3(b) shows the
J = 0 and J = 2 wave functions at a low energy of ε/h =
0.5 MHz (ε/kB = 24 μK), where J = 2 is strongly sup-
pressed at the relevant molecular bond lengths of �100 bohr.

The crossover from the ultracold, quantum-mechanical
regime to the axial-recoil limit is explored in Fig. 4 as a
function of the initial angular momentum Ji . The R parameter
is plotted as a function of energy for different odd Ji of
initial states within the {0+

u , 1u} electronic manifold, assuming
Mi = P = 0. The calculations were performed for the most
deeply bound vibrational level v = 0 to avoid any dependence
on v. For all initial states, R = 1 at threshold and decays to the
axial-recoil limit (shown with horizontal lines) as a function
of energy. In each frame, a vertical line marks the rotational
barrier height corresponding to the largest partial wave in the
continuum, Ji + 1. As expected, the barrier height sets the
energy scale for the onset of the axial-recoil regime. This
trend is evident despite the irregularities connected to shape
resonances for J = {4, 8, 20} (the J = 4 shape resonance has
been experimentally confirmed [9]).

B. Approaching the axial-recoil limit: Channel phase
and various approximations

The δ parameter in Eq. (4) is the phase difference between
the continuum channel wave functions and is independent of
the initial state of the photodissociated molecules. It is thus
readily amenable to a range of approximation techniques. We
consider the WKB approximation [19,20] and the semiclas-
sical approximation [21] and investigate their applicability to
photodissociation across a wide span of energies as well as
their convergence to the axial-recoil limit.

The WKB approximation is a method of solving linear
differential equations with spatially varying coefficients. It
is applicable to approximating the solutions to the time-
independent Schrödinger equation, where the wave function
is represented as an exponential with smoothly varying ampli-
tude and phase, and is a particularly useful method of finding
δ without using the full quantum-mechanical treatment.

The continuum wave function corresponding to the partial
wave J has the asymptotic behavior

ψJ (R) ∝ sin

(
kR + δJ − Jπ

2

)
, (8)

where k ≡ √
2με/h̄ and μ is the reduced mass. An an-

alytical expression for δJ is based on the WKB approx-
imation where the wave function is assumed to have the
form ψJ (R) = eiS(R)/h̄. If only the lowest-order term in
h̄ is kept in S(R), then ψ (R) ∝ sin[

∫ R
R0

p(R)dR/h̄ +
π/4] where R0 is the classical turning point and p(R) ≡
{2μ[E − V (R)] − J (J + 1)/R2}1/2 in terms of the molecu-
lar potential V (R). The WKB approximation is most applica-
ble at higher energies and breaks down near the turning point

Ji = 19

Ji = 7

Ji = 5

Ji = 3

Ji = 1

ε/h (MHz) ε/h (MHz)

R
R

R
R

R

0u
+ 1u

FIG. 4. Dependence of the amplitude-squared R parameter from
Eq. (4) on energy and on initial angular momentum Ji . The initial
molecular states are 0+

u (0, Ji, 0) (left column) and 1u(0, Ji, 0) (right
column), and P = 0. In each frame, the axial-recoil limit is indicated
by a horizontal line, and the highest rotational barrier in the contin-
uum is shown by a dashed vertical line. For larger Ji , the axial-recoil
limit is approached at higher energies, but in all cases the crossover
from the ultracold to the quasiclassical regime occurs at the energy
scale set by the barrier height. The initial states with Ji = 3, 7, 19
exhibit shape-resonance behavior.

where p(R) ≈ 0. Based on the WKB expression for ψ (R)
and Eq. (8), the asymptotic phase shift is

δWKB
J = lim

R→∞

[
1

h̄

∫ R

R0

p(R)dR + π

4
− kR + Jπ

2

]
. (9)

A related approach to investigating the quantum-
quasiclassical crossover is to consider the classical rotation
of the molecule during photodissociation. We refer to this
method as the semiclassical approximation. Its value is in the
intuitive interpretation of the molecular rotation angle during
the bond-breaking process and a slightly faster computational
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ε/h (MHz) ε/h (MHz)

co
s δ

co
s δ

Ji = 1 Ji = 3

Ji = 5 Ji = 7

FIG. 5. A comparison of the quantum-mechanical, WKB, and
semiclassical methods for evaluating cos δ for a range of initial
molecular angular momenta Ji within the 0+

u electronic manifold
(here Mi = P = 0). The phase angle δ quantifies interference be-
tween the two allowed dissociation channels and plays a key role in
the observed photofragment angular distributions. Both approxima-
tions approach the quantum-mechanical result at increasingly higher
energies that are set by the rotational barrier heights (dashed vertical
lines). All methods recover the axial-recoil limit (horizontal lines) at
high energies, but this convergence is slower for the δ parameter than
for the R parameter in Fig. 4.

convergence than the WKB method. The angle of rotation γ

between the initial molecular axis and the axis created by the
scattered fragments is γJ = ∫ ∞

R0
h̄
√

J (J + 1)/[p(R)R2]dR.
This angle is connected to the anisotropy parameter β2

by the relation β2 = βARP2(cos γ ), where βAR takes on
the limiting values from the quasiclassical model [4–6]
such that βAR = {2,−1} for parallel and perpendicular
photodissociation transitions, respectively. This semiclassical
approximation is more general than the quasiclassical model
which assumes that γ = 0.

The WKB method links the classical parameter γ to the
quantum-mechanical phase δJ through γ = −dδJ /dJ [20].
Further approximating the derivative by a difference quotient
yields the semiclassical approximation for the phase shifts,

δJ − δJ ′ = (J ′ − J )
γJ + γJ ′

2
. (10)

The semiclassical approximation has been successfully
applied to diatomic molecule photodissociation at the en-
ergy of several wave numbers above threshold [21], where a
deviation from the axial-recoil limit was observed, yielding
an agreement with quantum-mechanical calculations [22]. To
summarize, the hierarchy of approximations, from the most to
the least exact, is (i) the quantum-mechanical treatment, (ii)
the WKB approximation, (iii) the semiclassical model, and
(iv) the axial-recoil approximation (which is generally equiv-
alent to the quasiclassical model with exceptions discussed in
Sec. V and Ref. [8]).

Figure 5 compares the quantum-mechanical [Eq. (4)],
WKB [Eq. (9)], and semiclassical [Eq. (10)] approaches to
calculating the δ parameter. This phase angle is determined
for initial molecular states Ji = {1, 3, 5, 7} within the 0+

u

electronic manifold, assuming photodissociation with Mi =
P = 0. We find the applicability ranges of both approximation

methods to be similar, with the exception that the WKB
approximation is more accurate for very low Ji . These ranges
are set by the barrier heights in the continuum, indicated with
dashed vertical lines. We also find that all methods converge
to the axial-recoil limit cos δ = 1. However, this convergence
happens more slowly than for the R parameter in Fig. 4
and dominates the discrepancy between the measured angular
distributions and those expected for axial recoil at energies
beyond the barrier height, as in Fig. 2 where the barrier
height is only ∼10 MHz but nonclassical behavior persists to
∼103 MHz [23]. Furthermore, only the quantum-mechanical
approach is sensitive to shape resonances; for example, one
that is visible in Fig. 5 at ε/h ≈ 250 MHz for Ji = 7.

V. THE ROLE OF QUANTUM STATISTICS
IN PHOTODISSOCIATION

The equivalence of the quasiclassical approximation to the
axial-recoil limit of the quantum-mechanical model holds for
molecules in well-defined �i states under the assumption
that the photofragments are not identical bosons or fermions.
Section III E assumes that a molecule with angular momen-
tum Ji �= 0 can dissociate into the {Ji − 1, Ji, Ji + 1} partial
waves as allowed by E1 selection rules.

Spin statistics can impose additional limitations on the
available continuum channels, as is the case for Sr2 and many
other molecules. In the electronic ground state, J is always
even for Sr2 composed of identical bosonic Sr atoms and
odd for Sr2 composed of identical fermions, while in the 0+

u

excited state only odd J exist for the bosons and even J for
the fermions. In this work, we use bosonic 88Sr and there-
fore ground-state J are even. Furthermore, in cases where
�i = �k = 0 or Mi = Mk = P = 0, the properties of the 3j

symbols in Eqs. (2) and (3) [24] naturally force the J of the
photofragments to be only even or only odd, making the axial-
recoil approximation insensitive to quantum statistics [25].
Here we apply Eq. (3) to cases where quantum statistics must
be considered, and compare the results to the quasiclassical
model (6). In our experiment, this affects photodissociation
from the 1u electronic state to the ground-state continuum,
except in cases where Mi = P = 0.

First we assume that the photodissociation light polar-
ization points along the quantization axis. The two relevant
cases are J = Ji (applicable, for example, to fermionic-Sr
dimers dissociating from odd Ji) and J = {Ji − 1, Ji + 1}
(applicable to bosonic-Sr dimers photodissociating from odd
Ji as in our experiments). As shown in the Appendix, we apply
the axial-recoil cross section σAR(θ, φ) to both cases that are
governed by quantum statistics via restricting the sum over
Jk in Eq. (3) and find the modified photodissociation cross
section σQS,‖(θ, φ). The result can be written in a form that
resembles the quasiclassical cross section σQC(θ, φ) in Eq. (6)
but with the initial angular probability density Pi (θ, φ) =
|DJi

Mi�i
(φ, θ, 0)|2 replaced by

P ′
i,‖(θ, φ) =

∣∣∣DJi

Mi,1
(φ, θ, 0) − σiD

Ji

Mi,−1(φ, θ, 0)
∣∣∣2

, (11)

where σi ≡ pi (−1)Ji is the spectroscopic parity of the initial
state and pi is the parity with respect to space-fixed inversion.
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For example, for 1u initial states, pi = −1 for bosonic-Sr
dimers and pi = 1 for fermionic-Sr dimers.

Next we treat the case where the photodissociation light
polarization is perpendicular to the quantization axis. Again
spin statistics enforces either J = Ji or J = {Ji − 1, Ji + 1}.
As detailed in the Appendix, we adapt σAR(θ, φ) to both cases
and find the modified photodissociation cross section

σQS,⊥(θ, φ)

∝ cos2 φ

∣∣∣DJi

Mi,1
(φ, θ, 0) + σiD

Ji

Mi,−1(φ, θ, 0)
∣∣∣2

+ cos2 θ sin2 φ

∣∣∣DJi

Mi,1
(φ, θ, 0) − σiD

Ji

Mi,−1(φ, θ, 0)
∣∣∣2

.

(12)

This result does not directly resemble the quasiclassical cross
section σQC(θ, φ). However, as expected, Eq. (6) is recovered
for either light polarization when the appropriate quantum-
statistics-adapted cross section is summed over the initial state
parity pi .

The photodissociation cross sections modified by spin
statistics are thus not correctly described by the quasiclassical
model (6), even in the axial-recoil limit of large continuum
energies. This effect is observable in experiments as a de-
viation of high-energy photodissociation images from the
quasiclassical picture for certain initial molecular states and
light polarizations [17].

Figure 6 illustrates 88Sr2 photodissociation pathways
where photofragment angular distributions in the axial-recoil
limit cannot be described by the quasiclassical model (6)
but are accurately reflected in the quantum-mechanical model
[Eqs. (3), (11), and (12)]. In our experiment and in the figure,
the initial molecular states and laser polarizations that lead to
a nonquasiclassical axial-recoil limit are (a) 1u(Ji = 1,Mi =
{0, 1}, P = 1), (b) 1u(Ji = 3, Mi = {1, 2}, P = 0), and (c)
1u(Ji = 3, Mi = {0, 1, 2, 3}, P = 1). The case considered in
the top row of Fig. 6(a) results in a distribution that does
not evolve with energy, since only a single partial wave
J = 2 is allowed in the continuum by selection rules and
hence the matrix elements in Eq. (5) cancel for all energies
[26]. Our experimental measurements of angular distributions
always agree with quantum-mechanical calculations [17]. For
photodissociation of molecules in analogous quantum states
but composed of identical fermionic isotopes we expect to
observe different distributions than in Fig. 6, and still different
results, that are well described by the quasiclassical model, are
expected for mixed dimers.

VI. CONCLUSIONS

We report photodissociation of ultracold 88Sr2 molecules
in isolated internal quantum states, including different binding
energies and angular momenta, where we image and calculate
the photofragment angular distributions as a function of the
kinetic energy in the continuum, spanning from the ultracold
to the quasiclassical regime. At the higher energies that exceed
the relevant potential barriers, the distributions converge to
angular patterns that correspond to the axial-recoil limit where
the molecule has no time to rotate during the bond-breaking
process. In contrast, at the lower energies the distributions

1 u
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0 1
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FIG. 6. Quasiclassical and quantum-mechanical calculations of
the photofragment angular distributions do not generally converge
in the axial-recoil limit if the photofragments are identical particles.
Experimental measurements always agree with the quantum theory
[17]. Here the high-energy angular distributions are calculated with
the quasiclassical [Eq. (6)] and quantum-mechanical [Eqs. (3), (11),
and (12)] models for the 1u initial states with (a) Ji = 1, Mi =
{0, 1}, P = 1, (b) Ji = 3, Mi = {1, 2}, P = 0, and (c) Ji = 3, Mi =
{0, 1, 2, 3}, P = 1.

exhibit strong variation with energy and a dependence on the
initial molecular state.

We utilize precise quantum state selection to ensure a
two-channel photodissociation outcome that can be described
by only two parameters: an amplitude that has a weak depen-
dence on the initial vibrational quantum number and a phase
that only depends on the continuum wave functions. The am-
plitude converges to the axial-recoil limit significantly faster
than the phase, with a slower convergence for very weakly
bound initial molecular states. The WKB and semiclassi-
cal approximations are shown to agree with the quantum-
mechanical model at energies that exceed the barrier heights,
and to correctly approach the axial-recoil limit. Finally, we
find that in case of identical photofragments, the effects of
bosonic or fermionic statistics can persist into the high-energy
regime, in which case the axial-recoil limit disagrees with the
ubiquitous quasiclassical model.

The ability to observe the crossover from the ultracold to
the quasiclassical regime of photodissociation was enabled by
quantum state control of the molecules, making it possible to
populate exclusively low-angular-momentum states and thus
access low partial waves in the continuum that are strongly
sensitive to quantum effects. As more experiments begin
to probe cold and ultracold chemistry, including molecular
photodissociation, it is important to recognize the extent of
the parameter space where the processes are truly quantum
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mechanical. Our work brings this insight into a long-debated
issue of the applicability of quasiclassical models to molecular
photodissociation, and elucidates which parameters control
the convergence toward the high-energy limit.
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APPENDIX A: AXIAL-RECOIL LIMIT FOR
IDENTICAL PHOTOFRAGMENTS

1. Light polarization along the quantization axis

With the assumptions {�i = 1,�k = 0,Mk = Mi}, as for
Sr2 photodissociation from the 1u states to the ground-state
continuum with light polarization along the quantization axis
(P = 0), the axial-recoil photodissociation cross section (3)
becomes

σ (θ, φ) ∝
∣∣∣∣∣∣
∑
Jk

(−1)Mi (2Jk + 1)DJk

Mi0(φ, θ, 0)

×
(

Jk 1 Ji

−Mi 0 Mi

)(
Jk 1 Ji

0 −1 1

)∣∣∣∣∣∣
2

. (A1)

a. Partial waves restricted to Ji

After restricting the allowed partial waves to Jk = Ji and
transforming the D matrix as

D
Ji

Mi0(φ, θ, 0) = −
√

Ji (Ji + 1)

2Mi

sin θ

×
[
D

Ji

Mi,−1(φ, θ, 0) + D
Ji

Mi,1
(φ, θ, 0)

]
,

(A2)

Eq. (A1) reads

σ (θ, φ) ∝
∣∣∣DJi

Mi,1
(φ, θ, 0) + D

Ji

Mi,−1(φ, θ, 0)
∣∣∣2

sin2 θ.

(A3)

This cross section has the general form of Eq. (6) with
β2 = −1 (as expected for this �� = 1 transition), with the
initial angular probability density replaced by the expression
in Eq. (11).

b. Partial waves restricted to Ji ± 1

After restricting the partial waves to Jk = Ji ± 1, the
cross section in Eq. (A1) can be manipulated by taking the
sum over all partial waves and subtracting the forbidden
contributions,

σ (θ, φ) ∝
∣∣∣∣∣∣

∑
Jk={Ji−1,Ji ,Ji+1}

(−1)Mi (2Jk + 1)DJk

Mi0
(φ, θ, 0)

(
Jk 1 Ji

−Mi 0 Mi

)(
Jk 1 Ji

0 −1 1

)

− (−1)Mi (2Ji + 1)DJi

Mi0
(φ, θ, 0)

(
Ji 1 Ji

−Mi 0 Mi

)(
Ji 1 Ji

0 −1 1

)∣∣∣∣∣∣
2

=
∣∣∣∣D1

0,−1(φ, θ, 0)DJi

Mi,1
(φ, θ, 0) + (−1)Mi (2Ji + 1)

[
D

Ji

Mi,−1(φ, θ, 0) + D
Ji

Mi,1
(φ, θ, 0)

]
sin θ

×
√

Ji (Ji + 1)

2Mi

(
Ji 1 Ji

−Mi 0 Mi

)(
Ji 1 Ji

0 −1 1

)∣∣∣∣
2

=
∣∣∣∣− 1√

2
sin θD

Ji

Mi,1
(φ, θ, 0) + 1

2
√

2
sin θ

[
D

Ji

Mi,−1(φ, θ, 0) + D
Ji

Mi,1
(φ, θ, 0)

]∣∣∣∣
2

= 1

8

∣∣∣DJi

Mi,1
(φ, θ, 0) − D

Ji

Mi,−1(φ, θ, 0)
∣∣∣2

sin2 θ. (A4)

The second step of Eq. (A4) uses Eq. (A2) as well as the summation (Clebsch–Gordan series)

∑
Jk

(−1)Mk+�k (2Jk + 1)DJk

Mk�k
(φ, θ, 0)

(
Jk 1 Ji

−Mk P Mi

)(
Jk 1 Ji

−�k Q �i

)

=
∑
Jk

D
Jk

−Mk−�k

(φ, θ, 0)

(
Jk 1 Ji

−Mk P Mi

)(
Jk 1 Ji

−�k Q �i

)

= D
Ji

Mi�i
D1

PQ. (A5)

The cross section in Eq. (A4) also has the general form of Eq. (6) with β2 = −1 and the initial angular probability density
replaced by Eq. (11).
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2. Light polarization normal to the quantization axis

With the assumptions {�i = 1,�k = 0,Mk = Mi ± 1}, as for Sr2 photodissociation from the 1u states to the ground-state
continuum with light polarization normal to the quantization axis (P = ±1), the axial-recoil cross section (3) becomes

σ (θ, φ) ∝
∣∣∣∣∣∣
∑
JkP

(−1)Mk (2Jk + 1)DJk

Mk0(φ, θ, 0)

(
Jk 1 Ji

−Mk P Mi

)∣∣∣∣∣∣
2

. (A6)

a. Partial waves restricted to Ji

After restricting the partial waves to Jk = Ji , summing over P , and evaluating the 3j symbols, the cross section in Eq. (A6)
becomes

σ (θ, φ) ∝ (2Ji +1)

(
Ji 1 Ji

0 −1 1

)∣∣∣DJi

Mi+1,0(φ, θ, 0)
√

(Ji − Mi )(Ji + Mi + 1) − D
Ji

Mi−1,0(φ, θ, 0)
√

(Ji + Mi )(Ji − Mi + 1)
∣∣∣2

.

(A7)

We use recursion formulas [27]

D
Ji

Mi+1,0(φ, θ, 0)eiφ =
√

Ji (Ji + 1)√
(Ji − Mi )(Ji + Mi + 1)

[
1 + cos θ

2
D

Ji

Mi,−1(φ, θ, 0) − 1 − cos θ

2
D

Ji

Mi,1
(φ, θ, 0)

]
, (A8)

D
Ji

Mi−1,0(φ, θ, 0)e−iφ =
√

Ji (Ji + 1)√
(Ji + Mi )(Ji − Mi + 1)

[
1 + cos θ

2
D

Ji

Mi,1
(φ, θ, 0) − 1 − cos θ

2
D

Ji

Mi,−1(φ, θ, 0)

]
(A9)

to transform Eq. (A7) into

σ (θ, φ) ∝ ∣∣DJi

Mi,1
(φ, θ, 0)(cos φ + i cos θ sin φ) − D

Ji

Mi,−1(φ, θ, 0)(cos φ − i cos θ sin φ)
∣∣2

∝ cos2 φ
∣∣DJi

Mi,1
(φ, θ, 0) − D

Ji

Mi,−1(φ, θ, 0)
∣∣2 + cos2 θ sin2 φ

∣∣DJi

Mi,1
(φ, θ, 0) + D

Ji

Mi,−1(φ, θ, 0)
∣∣2

. (A10)

b. Partial waves restricted to Ji ± 1

With the partial waves limited to Jk = Ji ± 1, the cross section in Eq. (A6) can again be manipulated by taking the sum over
all partial waves and subtracting the forbidden contributions,

σ (θ, φ) ∝
∣∣∣∣∣∣
∑
JkP

(−1)Mk (2Jk + 1)DJk

Mk0(φ, θ, 0)

(
Jk 1 Ji

−Mk P Mi

)(
Jk 1 Ji

0 −1 1

)
(A11)

− (−1)Mk (2Ji + 1)DJi

Mk0(φ, θ, 0)

(
Ji 1 Ji

−Mk P Mi

)(
Ji 1 Ji

0 −1 1

)∣∣∣∣∣∣
2

.

After applying Eq. (A2) to the first term and Eqs. (A8) and (A9) to the second term on the right-hand side of Eq. (A11), we
obtain the cross section

σ (θ, φ) ∝
∣∣∣DJi

Mi,1
(φ, θ, 0)

[
D1

1,−1(φ, θ, 0) + D1
−1,−1(φ, θ, 0)

] + 1
2D

Ji

Mi,1
(φ, θ, 0)(cos φ + i cos θ sin φ)

− 1
2D

Ji

Mi,−1(φ, θ, 0)(cos φ − i cos θ sin φ)
∣∣∣2

=
∣∣∣DJi

Mi,1
(φ, θ, 0)(cos φ + i cos θ sin φ) + D

Ji

Mi,−1(φ, θ, 0)(cos φ − i cos θ sin φ)
∣∣∣2

∝ cos2 φ

∣∣∣DJi

Mi,1
(φ, θ, 0) + D

Ji

Mi,−1(φ, θ, 0)
∣∣∣2

+ cos2 θ sin2 φ

∣∣∣DJi

Mi,1
(φ, θ, 0) − D

Ji

Mi,−1(φ, θ, 0)
∣∣∣2

. (A12)
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