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This supplement summarizes our extension of the
quantum mechanical theory of photodissociation to the
situation where the total angular momentum is not a con-
served quantum number, as is the case in our ultracold-
molecule experiments with applied magnetic fields.

NOTATION

In the following theoretical description of quantum
mechanical photodissociation, the notation follows Refs.
[1, 2] with slight changes. The main symbols are as fol-
lows:

e R = (R,0,®): vector that connects the pair of
atomic fragments. The angles ©, ® are defined rel-
ative to the molecular axis.

e {r}: set of electronic coordinates of the atoms.

ek = (k60,¢): scattering wave vector of the
photofragments. The angles 6, ¢ are defined rel-
ative to the z axis, the quantum axis in the lab
frame.

® j = j1 + jo: combined angular momentum of the
atomic fragments.

e m; = m: projection of j onto the lab 2 axis.

e 1. orbital angular momentum of the atomic frag-
ments about their center of mass.

e m;: projection of 1 onto the lab z axis.

e J = j+1: total angular momentum of the photodis-
sociated system.

e M = m; +my: projection of J onto the lab z axis.

e (: projection of J onto the molecular axis.

A novel aspect of this work is that the total angu-
lar momentum J is not conserved, while M is the rigor-
ously conserved quantum number. To account for this,
we introduce the indexed angular momenta Jr and Jy,
where the subscripts R and k denote the “entrance” and
“exit” channels for the continuum wave function of the
photofragments.

PARAMETRIZATION OF THE
PHOTOFRAGMENT ANGULAR DISTRIBUTION

For photodissociation of a diatomic molecule, the
photofragment angular distribution (PAD) is given by

the intensity function of the polar angle 6 and azimuthal
angle ¢ as
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where PY(cosf)) are the associated Legendre polynomials
and j3,, are anisotropy parameters. For the parallel po-
larization of light, the PADs are cylindrically symmetric
(no ¢ dependence) [3], and we set 5, = S0 while all
other 3,, vanish.

THEORY OF PHOTODISSOCIATION IN A
MAGNETIC FIELD

The photodissociation process is characterized by a dif-
ferential cross section o(k) = |f|2, defined by Fermi’s
golden rule with the electric-dipole (E1) transition oper-
ator. The corresponding scattering amplitude is
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where W5, ({r},R) and ¥;""({r},R) are the ini-
tial (bound-state) and final (continuum) wave func-
tions. This description was first applied in the Born-
Oppenheimer approximation in [4]. Furthermore, the
treatment of triatomic photodissociation [5 [6] is use-
ful for our diatomic case with additional internal atomic
structure. Detailed derivation of photodissociation the-
ory for individual magnetic sublevels is available in liter-
ature [1,[2,[7]. However, to the best of our knowledge, the
wave functions in the presence of a magnetic field (eigen-
functions of the Zeeman Hamiltonian) have not been pre-
viously incorporated into the theory. Photodissociation
in a magnetic field was discussed in Ref. [§], but J was
assumed to be a good quantum number, which is not the
case in our experimental regime even for weak fields.

In this work we consider El1 photodissociation of
weakly bound ground-state 23Sr, molecules into the
0 /1, ungerade continuum correlating to the 1So+3P
atomic threshold. The transition operator connecting the
initial and final wave functions is assumed to be constant
and proportional to the atomic value. This approxima-
tion is valid for weakly bound molecules. It is assumed
that the field affects only the excited states, since the
ground state (correlating to 1.Sy+1Sy) is nearly nonmag-
netic.
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where ¢ is the spectroscopic parity defined as p(—1)7,
p is the parity with respect to the space-fixed inversion,
and Dy, are the Wigner rotation matrices. In Hund’s
case (c) the internal wave function ¢, ({r}, R) can be
represented by the Born-Huang expansion [9] [10],

o,({r}, R) qun o ({rh R)xy 0, (R),  (4)

where ¢p,q0,({r}; R) are the solutions of the elec-
tronic Schrodinger equation including spin-orbit cou-
pling, XZ,Q(R) are the rovibrational wave functions,
and the index n labels all relativistic electronic channels
that are included in the model. The rovibrational wave
functions are solutions of a system of coupled differential
equations as detailed in Ref. [IT].

Continuum state wave function

The correct description of the final (continuum) wave
function is crucial to explaining and predicting the out-
come of photodissociation in a magnetic field. Zeeman
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where Y},,,, are spherical harmonics. The detailed deriva-
tion of this wave function is found in Refs. [2 [5], but for
the simpler case when J is a good quantum number and
the Ji, Jr channel numbers are not needed.

The function w‘j}‘;ﬁzﬂlq’fp ({r}, R) can be expressed by the
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Bound state wave function

Since the initial (bound-state) wave function is not af-
fected by the magnetic field B, it is given by the standard
form using the electronic coordinates {r} and the inter-
nuclear vector R,

o ({rhB),
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mixing of rovibrational levels was responsible for observa-
tions of forbidden molecular (bound-to-bound) E1 tran-
sitions that violate the AJ = 0,%1 selection rule [12].
Similar effects are expected for bound-to-continuum pho-
todissociation transitions.

In a magnetic field, the only conserved quantities are
the projection of the total angular momentum M and
the total parity. For dissociation to the ungerade contin-
uum (1Sp+3P;), the atomic angular-momentum quan-
tum number is j = 1. Its magnetic sublevels m; =
1,0, —1 are split by the field, and therefore the photodis-
sociation cross section calculations have to be performed
for each sublevel individually. The 0} and 1, states,
corresponding to 2 = 0 and |2] = 1, are coupled by
the nonadiabatic Coriolis interaction, while the Zeeman
interaction couples the AJ = 0,+1 states. For these
reasons, two sets of additional numbers are introduced:
Qgr, Jr, ng correspond to the entrance channels of the
multichannel continuum wave function and Qg, Jx, Nk
correspond to the exit channels. In this work, selection
rules set Qg = 1.

As a result, the continuum wave function correspond-
ing to the wave vector k is
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where the wave functions ¢, ,q. ({r}, R) are the solutions
of the electronic Schrédinger equation. The rovibrational
wave functions X?]‘ikg "2t (R) are obtained by solving the

nuclear Schrodinger equation with the Hamiltonian
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where V(R) is the potential matrix including the Coriolis
and Zeeman couplings, & is the reduced Planck constant,
and p is the reduced atomic mass.

At large interatomic distances in the presence of ex-
ternal fields, the asymptotic value of V(R), or Vg,
is not diagonal in the basis of the wave functions
dnpar({r}, R). It is then necessary to introduce a trans-
formation C that diagonalises V,s. The rovibrational
functions XJJ‘;kg ForP(R) form a matrix X that is prop-
agated to large distances and transformed to the basis
that diagonalizes the asymptotic potential, X = CTXC.
Then the boundary conditions are imposed [13] [14] as

(®)

where K is the reaction matrix, J(R) and N(R) are the
diagonal matrices containing the spherical Bessel func-
tions for the open channels,

X(R) — J(R)+ N(R) - K,
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and [A] = 2A + 1. The symbols UJJ]’;ZM in Eq. are
|
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and the symbols ti’; are the scaled matrix elements of the
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k; is the wave number of the jth channel, and [ is the
orbital angular momentum of the jth channel. A more
detailed description of the close-coupled equations in a
magnetic field can be found in Ref. [I5].

Anisotropy parameters

After inserting the wave functions and into
Fermi’s golden rule and transforming the cross sec-
tion for photodissociation using the Clebsch-Gordan se-
ries and properties of the Wigner 35 symbols, we obtain
the following expansion for the PAD:
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where the anisotropy parameters are given by

defined as

(

asymptotic body-fixed E1 transition operator dgr with
the initial and final rovibrational wave functions,
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The normalization factor Sy is given by
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In Eq. , the polarization index P = 0 if the pho-
todissociation light is polarized along the z axis, while
P = —1,1 if the light is polarized perpendicularly to the
z axis.

The properties of the 35 symbols force the following
rules for the u, v indices:

e 4 is even for homonuclear dimers.

® lmax = 2Jkmax + 27 = 2Ji max + 2 for resolved
m sublevels. Thus the number of terms in the ex-
pansion is limited by the number of channels
used to construct the continuum wave function.
(When the m sublevels are degenerate and are ob-
served simultaneously, additional symmetry leads
t0 Umax = 2Jkmax-) If B = 0, then Jgmax = 1
and fimax = 4, as can be seen in Fig. 3(d-h) of the
manuscript.

e v=M —M. Since M = M’ = M; for parallel light
polarization, ¥ = 0 and thus the photodissociation
cross section is cylindrically symmetric in this case.

The anisotropy parameters presented in Fig. 3(d-h) of
the manuscript are calculated using Eq. , but instead
of summing over J, J;,, the normalized contributions of
each combination Ji,J; are individually plotted. The
curves in Fig. 3(d) illustrate the relative contributions
to the photodissociation transition strength; note that all
curves in Fig. 3(d) must add to unity if the (Jx, Jj, # Ji)
contributions are doubled.
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