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This supplement summarizes our extension of the
quantum mechanical theory of photodissociation to the
situation where the total angular momentum is not a con-
served quantum number, as is the case in our ultracold-
molecule experiments with applied magnetic fields.

NOTATION

In the following theoretical description of quantum
mechanical photodissociation, the notation follows Refs.
[1, 2] with slight changes. The main symbols are as fol-
lows:

• R = (R,Θ,Φ): vector that connects the pair of
atomic fragments. The angles Θ,Φ are defined rel-
ative to the molecular axis.

• {r}: set of electronic coordinates of the atoms.

• k = (k, θ, φ): scattering wave vector of the
photofragments. The angles θ, φ are defined rel-
ative to the z axis, the quantum axis in the lab
frame.

• j = j1 + j2: combined angular momentum of the
atomic fragments.

• mj ≡ m: projection of j onto the lab z axis.

• l: orbital angular momentum of the atomic frag-
ments about their center of mass.

• ml: projection of l onto the lab z axis.

• J = j+l: total angular momentum of the photodis-
sociated system.

• M = mj +ml: projection of J onto the lab z axis.

• Ω: projection of J onto the molecular axis.

A novel aspect of this work is that the total angu-
lar momentum J is not conserved, while M is the rigor-
ously conserved quantum number. To account for this,
we introduce the indexed angular momenta JR and Jk,
where the subscripts R and k denote the “entrance” and
“exit” channels for the continuum wave function of the
photofragments.

PARAMETRIZATION OF THE
PHOTOFRAGMENT ANGULAR DISTRIBUTION

For photodissociation of a diatomic molecule, the
photofragment angular distribution (PAD) is given by

the intensity function of the polar angle θ and azimuthal
angle φ as

I(θ, φ) ∝ β0

(
1 +

∞∑
µ=1

µ∑
ν=0

βµνP
ν
µ (cos θ) cos(νφ)

)
, (1)

where P νµ (cos θ) are the associated Legendre polynomials
and βµν are anisotropy parameters. For the parallel po-
larization of light, the PADs are cylindrically symmetric
(no φ dependence) [3], and we set βµ ≡ βµ0 while all
other βµν vanish.

THEORY OF PHOTODISSOCIATION IN A
MAGNETIC FIELD

The photodissociation process is characterized by a dif-
ferential cross section σ(k̂) = |f |2, defined by Fermi’s
golden rule with the electric-dipole (E1) transition oper-
ator. The corresponding scattering amplitude is

f ∝ 〈Ψjmjpf
k ({r},R)|T̂ 1

E1|Ψ
pi
JiMi

({r},R)〉, (2)

where Ψpi
JiMi

({r},R) and Ψ
jmjpf
k ({r},R) are the ini-

tial (bound-state) and final (continuum) wave func-
tions. This description was first applied in the Born-
Oppenheimer approximation in [4]. Furthermore, the
treatment of triatomic photodissociation [5, 6] is use-
ful for our diatomic case with additional internal atomic
structure. Detailed derivation of photodissociation the-
ory for individual magnetic sublevels is available in liter-
ature [1, 2, 7]. However, to the best of our knowledge, the
wave functions in the presence of a magnetic field (eigen-
functions of the Zeeman Hamiltonian) have not been pre-
viously incorporated into the theory. Photodissociation
in a magnetic field was discussed in Ref. [8], but J was
assumed to be a good quantum number, which is not the
case in our experimental regime even for weak fields.

In this work we consider E1 photodissociation of
weakly bound ground-state 88Sr2 molecules into the
0+
u /1u ungerade continuum correlating to the 1S0+3P1

atomic threshold. The transition operator connecting the
initial and final wave functions is assumed to be constant
and proportional to the atomic value. This approxima-
tion is valid for weakly bound molecules. It is assumed
that the field affects only the excited states, since the
ground state (correlating to 1S0+1S0) is nearly nonmag-
netic.



2

Bound state wave function

Since the initial (bound-state) wave function is not af-
fected by the magnetic field B, it is given by the standard
form using the electronic coordinates {r} and the inter-
nuclear vector R,

Ψpi
JiMi

({r},R) =
1√
2

√
2Ji + 1

8π2

+Ji∑
Ωi=−Ji

1√
1 + δΩi0

(3)

×
(
D

(Ji)
?

MiΩi
(φ, θ, 0)ψpiJiΩi

({r}, R) + σiD
(Ji)

?

Mi−Ωi
(φ, θ, 0)ψpiJi−Ωi

({r}, R)
)
,

where σ is the spectroscopic parity defined as p(−1)J ,
p is the parity with respect to the space-fixed inversion,
and DJ

MΩ are the Wigner rotation matrices. In Hund’s
case (c) the internal wave function ψpiJiΩi

({r}, R) can be
represented by the Born-Huang expansion [9, 10],

ψpiJiΩi
({r}, R) =

∑
ni

φniΩi
({r};R)χpiniJiΩi

(R), (4)

where φniΩi
({r};R) are the solutions of the elec-

tronic Schrödinger equation including spin-orbit cou-
pling, χpiniJiΩi

(R) are the rovibrational wave functions,
and the index n labels all relativistic electronic channels
that are included in the model. The rovibrational wave
functions are solutions of a system of coupled differential
equations as detailed in Ref. [11].

Continuum state wave function

The correct description of the final (continuum) wave
function is crucial to explaining and predicting the out-
come of photodissociation in a magnetic field. Zeeman

mixing of rovibrational levels was responsible for observa-
tions of forbidden molecular (bound-to-bound) E1 tran-
sitions that violate the ∆J = 0,±1 selection rule [12].
Similar effects are expected for bound-to-continuum pho-
todissociation transitions.

In a magnetic field, the only conserved quantities are
the projection of the total angular momentum M and
the total parity. For dissociation to the ungerade contin-
uum (1S0+3P1), the atomic angular-momentum quan-
tum number is j = 1. Its magnetic sublevels mj =
1, 0,−1 are split by the field, and therefore the photodis-
sociation cross section calculations have to be performed
for each sublevel individually. The 0+

u and 1u states,
corresponding to Ω = 0 and |Ω| = 1, are coupled by
the nonadiabatic Coriolis interaction, while the Zeeman
interaction couples the ∆J = 0,±1 states. For these
reasons, two sets of additional numbers are introduced:
ΩR, JR, nR correspond to the entrance channels of the
multichannel continuum wave function and Ωk, Jk, nk
correspond to the exit channels. In this work, selection
rules set ΩR = 1.

As a result, the continuum wave function correspond-
ing to the wave vector k is

Ψ
pjmj

k ({r},R) =
∑

JkMJR

∑
ΩkΩR

∑
lml

(−1)Jk+ΩkY ?lml
(k̂)

√
2l + 1

8π2

(
Jk j l
−M mj ml

)(
Jk j l
Ωk −Ωk 0

)
(5)

×
√

2Jk + 1√
1 + δΩk0

1√
1 + δΩR0

(
DJR

ΩRM
(R̂)ψjJkΩkp

JRΩR
({r}, R) + pDJR

−ΩRM
(R̂)ψjJkΩkp

JR−ΩR
({r}, R)

)
,

where Ylml
are spherical harmonics. The detailed deriva-

tion of this wave function is found in Refs. [2, 5], but for
the simpler case when J is a good quantum number and
the Jk, JR channel numbers are not needed.

The function ψjJkΩkp
JRΩR

({r}, R) can be expressed by the

Born-Huang expansion as

ψjJkΩkp
JRΩR

({r}, R) =
∑
nknR

φnRΩR
({r}, R)χjJkΩknkp

JRΩRnR
(R),

(6)
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where the wave functions φnRΩR
({r}, R) are the solutions

of the electronic Schrödinger equation. The rovibrational
wave functions χjJkΩknkp

JRΩRnR
(R) are obtained by solving the

nuclear Schrödinger equation with the Hamiltonian

Ĥ = − ~2

2µR2

∂

∂R
R2 ∂

∂R
+

~2l2

2µR2
+ V (R), (7)

where V (R) is the potential matrix including the Coriolis
and Zeeman couplings, ~ is the reduced Planck constant,
and µ is the reduced atomic mass.

At large interatomic distances in the presence of ex-
ternal fields, the asymptotic value of V (R), or Vas,
is not diagonal in the basis of the wave functions
φnRΩR

({r}, R). It is then necessary to introduce a trans-
formation C that diagonalises Vas. The rovibrational
functions χjJkΩknkp

JRΩRnR
(R) form a matrix X̄ that is prop-

agated to large distances and transformed to the basis
that diagonalizes the asymptotic potential, X = CT X̄C.
Then the boundary conditions are imposed [13, 14] as

X(R)→ J(R) +N(R) ·K, (8)

where K is the reaction matrix, J(R) and N(R) are the
diagonal matrices containing the spherical Bessel func-
tions for the open channels,

[J(R)]ij = δij
1√
kj
jl(kjR), [N(R)]ij = δij

1√
kj
nl(kjR),

(9)

kj is the wave number of the jth channel, and l is the
orbital angular momentum of the jth channel. A more
detailed description of the close-coupled equations in a
magnetic field can be found in Ref. [15].

Anisotropy parameters

After inserting the wave functions (3) and (5) into
Fermi’s golden rule (2) and transforming the cross sec-
tion for photodissociation using the Clebsch-Gordan se-
ries and properties of the Wigner 3j symbols, we obtain
the following expansion for the PAD:

I(θ, φ) ∝ β0

(
1 +

∞∑
µ=1

µ∑
ν=0

βµνP
ν
µ (cos θ) cos(νφ)

)
,

(1 revisited)

where the anisotropy parameters are given by

βµν =
1

β0

∑
JkJRJ′

kJ
′
R

∑
ll′MM ′

tJkJRt
J′
k?

J′
R
UJklJRM

U
J′
kl

′

J′
RM

′ [µ]

√
(µ− ν)!

(µ+ ν)!
(2− δMM ′)

(
l l′ µ

M −mj mj −M ′ ν

)(
l l′ µ
0 0 0

)
(10)

and [A] ≡ 2A + 1. The symbols UJklJRM
in Eq. (10) are defined as

UJklJRM
=
∑

PΩkml

(−1)Jk+Ωk−mj [l]

√
[Jk]√

1 + δΩk0

(
Jk j l
−M mj ml

)(
Jk j l
Ωk −Ωk 0

)(
JR 1 Ji
−M P Mi

)
, (11)

and the symbols tJkJR are the scaled matrix elements of the asymptotic body-fixed E1 transition operator dBF with
the initial and final rovibrational wave functions,
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tJkJR =
1

2
√

2

Ji∑
Ωi=−Ji

J∑
ΩR=−J

1∑
q=−1

∑
nknR

(−1)M−ΩR

√
[Ji]√

1 + δΩi0

√
[JR]√

1 + δΩR0

(12)

×
(
JR 1 Ji
−ΩR q Ωi

)
〈χjJkΩknkp
JRΩRnR

(R)|dBF|χpiniJiΩi
(R)〉.

The normalization factor β0 is given by

β0 =
∑
lM

∣∣∣∣∣∑
JkJR

tJkJRU
Jkl
JRM

√
2l + 1(−1)Jk

∣∣∣∣∣
2

. (13)

In Eq. (11), the polarization index P = 0 if the pho-
todissociation light is polarized along the z axis, while
P = −1, 1 if the light is polarized perpendicularly to the
z axis.

The properties of the 3j symbols force the following
rules for the µ, ν indices:

• µ is even for homonuclear dimers.
• µmax = 2Jk,max + 2j = 2Jk,max + 2 for resolved
m sublevels. Thus the number of terms in the ex-
pansion (1) is limited by the number of channels
used to construct the continuum wave function.
(When the m sublevels are degenerate and are ob-
served simultaneously, additional symmetry leads
to µmax = 2Jk,max.) If B = 0, then Jk,max = 1
and µmax = 4, as can be seen in Fig. 3(d-h) of the
manuscript.
• ν = M ′−M . Since M = M ′ = Mi for parallel light

polarization, ν = 0 and thus the photodissociation
cross section is cylindrically symmetric in this case.

The anisotropy parameters presented in Fig. 3(d-h) of
the manuscript are calculated using Eq. (10), but instead
of summing over Jk, J

′
k, the normalized contributions of

each combination Jk, J
′
k are individually plotted. The

curves in Fig. 3(d) illustrate the relative contributions
to the photodissociation transition strength; note that all
curves in Fig. 3(d) must add to unity if the (Jk, J

′
k 6= Jk)

contributions are doubled.
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