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TL;DR: Experimental demonstration of the “Miller” self-capacitance for a single-

layer solenoid inductor in the lumped regime and a related result for weak loading.

Involved modifying the solenoid to be a concentric cylindrical capacitor with variable

capacitance and measuring its resonant frequencies with known capacitive loads.

This note presents the results of an experiment performed in 2014–2015 to test the “Miller

self-capacitance” derived at least as early as 1919 by J. M. Miller1,2 and discussed in Ref. 3.

This self capacitance is an analytical prediction for the effective capacitance of a single-

layer solenoid that is grounded at one end and connected in parallel with a large capacitive

load Cload. Importantly, its derivation assumes that the solenoid can be treated as an ideal

transmission line with a constant, uniformly distributed capacitance c per length. Therefore,

it is an approximation of the actual capacitance encountered in practice for which there is

no accepted analytical model.4

The Miller self-capacitance has a particularly simple form. Its derivation3 assumes the

voltage V (x, t) along a solenoid of length H at any time is distributed linearly, V (x, t) ≈
(x/H)Vmax(t). In a transmission-line model, the energy stored by capacitance is then
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where brackets denote a time average. The Miller self-capacitance is

CMiller =
1

3
C0 (2)

FIG. 1. Setup. (a) Arrangement to measure resonant frequency with Cload. (b) Cross section of

solenoid showing outer layers of paper dielectric and foil to control the distributed capacitance c.

(c) Arrangement to measure uniform capacitance C0. (Right) Picture of setup in arrangement (a).

https://bartmcguyer.com/notes/note-12-MillerCapTest.pdf


2

expressed in terms of a uniform voltage capacitance for the solenoid

C0 = cH. (3)

The factor of 1/3 comes from the integral
∫ 1

0
x2dx = 1/3.

I performed this experiment just out of curiosity to see if a real solenoid would reproduce

the Miller self-capacitance, which is such a simple seeming result, in controlled conditions.

Additionally, this experiment also probed a similarly simple result for the low-load limit

that has a factor of 4/π2 instead of 1/3.3

I. EXPERIMENTAL SETUP

Experimentally, the self capacitance of a single-layer solenoid is awkward to explore for a

few reasons. First, at its simplest, it is a transmission line effect with the solenoid comprising

one only of two wires of the line. The other wire is the solenoid’s environment, which can’t be

ignored, in particular, because the solenoid’s ends are connected to ground and to Cload. So,

the environment is an unspecified yet important systematic to control. Additionally, the self

capacitance is usually in the pF range, which is . . . annoying to measure. Last but not least,

you usually have to measure several solenoids to demonstrate any parametric dependence.

To address these issues, I chose to use only one solenoid and to vary its environment in

a controlled way, as shown in Fig. 1. I did this by modifying the solenoid to be a concentric

cylindrical capacitor by wrapping it with one or more layers of dielectric (almost always

printer paper) and then aluminum foil as a grounded outer electrode.7 This approach brought

both C0 and the self capacitance into the nF range, which is much easier to accurately

measure. To try to show the parametric dependence of (2) on C0 with only one solenoid, I

then varied the dielectric thickness and foil tension to control C0 and measure its effect on

the self capacitance of the solenoid.

Importantly, by significantly increasing the distributed capacitance c of the solenoid this

way, the non-ideal effects of the inter-turn capacitances, primarily between neighboring

turns, were artificially suppressed. Therefore, this setup should’ve made the solenoid behave

a little more like an ideal transmission line, as assumed by the Miller self capacitance.

However, no attempt was made to control the spatial variation of the distributed capacitance

c along the coil, which is expected to peak near the ends, apart from keeping the solenoid

reasonably far away from unwanted conductors.

Table I lists relevant physical parameters for the solenoid, which was made of a single

layer of close-wound magnet wire on a PVC pipe form. Additional information about it is

available in Ref. 5. Without a foil outer electrode, its self inductance Ls was independent of

frequency to within measurement error from 100 to 100,000 Hz.

Measurements proceeded by first adjusting the outer dielectric and foil layers to get a

desired value of the uniform capacitance C0, which was measured directly with an LCR

meter (DER EE DE-5000) as shown in Fig. 1. Then the self capacitance was determined

by measuring the lowest resonant frequency f1 of the solenoid with each of three different

capacitors of frequency-independent capacitance Cload = 142.7 ± 0.4 (“150”), 48.6 ± 0.2
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TABLE I. Physical parameters for the single-layer solenoid inductor.

Parameter Value Units Comment

Diameter of winding 0.168 ± 0.002 m Measured, pipe outer (winding inner) diameter.

Length of winding 0.506 ± 0.002 m Measured.

Number of turns 712 Manufacturer label.

Wire gauge 22 AWG Manufacturer label.

Resistance Rs 20.4 ± 0.2 Ohms Measured, 100 Hz (DER EE DE-5000).

Inductance Ls 24.49 ± 0.09 mH Measured, 10 kHz (DER EE DE-5000).

(“47”), or 5.02 ± 0.02 nF (“5 nF”). This used a signal generator (BK 4085) to drive the

solenoid base with a 0.1 V peak-peak sine wave at several fixed frequencies about resonance,

and an oscilloscope to measure the sinusoidal amplitudes of the base and top voltages of

the solenoid with compensated 10X probes, as shown in Fig. 1. Preliminary tests found no

difference between the results of this base-drive method and mutual-inductive or parallel-

drive methods. This process was repeated for each value of C0. For C0 ≈ 0.6 nF, packing

foam was used instead of printer paper. The lowest value of C0 corresponds to a bare solenoid

without dielectric or foil outer layers.

II. DATA ANALYSIS AND RESULTS

Fig. 2 shows example resonance data. To determine resonant frequencies, the frequency-

dependent ratio of the sinusoidal amplitudes of the driving base voltage V1 and the top

voltage V2 were fit with the expected resonant line shape for a driven series RLC circuit.

Noting that the top voltage V2 is across the total circuit capacitance C1, this line shape is

|V2(f)/V1(f)| = f 2
1√

(f 2
1 − f 2)2 + (f Γ1)2

(4)

where f1 = 1/(2π
√
LsC1) is an undamped resonant frequency and Γ1 = R1/(2πLs) is a

damping factor from the total circuit resistance R1. Typical fit values of R1 were around

150, 180, and 400 Ohms for 150, 47, and 5 nF Cload. As shown in Fig. 2, this line shape

described the data well, but clear residuals similar to those shown were present in all data

and increased in size with frequency.

The total circuit capacitance C1 is assumed to be the sum of a self capacitance Cself for

the solenoid and the load capacitance Cload,

C1 = Cself + Cload. (5)

The values of Cself from each resonance were computed as

Cself =
1

(2πf1)2Ls

− Cload. (6)
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FIG. 2. Resonance data. (Left) Example fit to determine a resonant frequency f1, with fit residuals

shown. (Right) All fitted resonant frequency data plotted against the uniform capacitance C0 as

directly measured by an LCR meter (at 1kHz above 2 nF, at 10 kHz below 2 nF).

The uncertainty for each value was computed by propagating the uncertainties from the

solenoid self inductance, the resonant frequency, and the load capacitance as

δCself =
√

(δCload)2 + (Cself + Cload)2[(2δf1/f1)2 + (δLs/Ls)2]. (7)

The load capacitance uncertainty tended to dominate. Note that one value of inductance

was used for all data, so δLs is a common error shared by all data points. Likewise, the

uncertainty δCload is shared by all data points using the same Cload.

It turns out that printer paper was a poor choice for the dielectric, because it has a

significant dependence on frequency across the audio range. This is an important systematic

error because the values of C0 were measured at different frequencies than the corresponding

f1 and Cself. To correct for this error, I roughly characterized the type of printer paper used

in an independent experiment. The results are summarized in Ref. 6 with a frequency-

dependent capacitance C(f) in terms of a Cole-Cole permittivity as

C(f) ∝ <[εr(f)] = ε0 + ε1
1 + cos(γπ/2)(f/f0)

γ

1 + 2 cos(γπ/2)(f/f0)γ + (f/f0)2γ
. (8)

For a capacitance normalized to unity at 100 Hz, C(100 Hz) = 1, rough values for the

parameters were ε0 ≈ 0.593, ε1 ≈ 1.33, γ ≈ 0.5, and f0 ≈ 24 Hz. Unfortunately, the

frequency dependence of the actual dielectrics used couldn’t be determined in situ because

of the circuit behavior of the solenoid.

Fig. 3 shows the results. The top plot shows the values of Cself of (6) determined by

fitting resonances versus the values of C0 from LCR measurements. The bottom plot shows

the same data, but the values of C0 have been adjusted using (8) to their expected values

at the corresponding f1 for each data point.
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III. DISCUSSION

Fig. 3 (bottom) presents the final results of this experiment. The data for each value of

Cload tell a slightly story as discussed in detail below. Overall, the data do seem to provide

support for the simple form of the Miller self-capacitance in (2) in such controlled conditions,

and also to provide support for a related self capacitance near the unloaded limit.3

The 47 nF data (red circles) provide the most compelling evidence. For the full range

of the data, the load was large enough to be in the lumped regime [following Fig. 13 (top

right) of Ref. 3]. With the exception of a suspected outlier at C0 ≈ 12 nF (not adjusted) to

be discussed next, the data agrees with the expected slope of 1/3 to well within error.

The data at C0 ≈ 12 nF (not adjusted) appears to be an outlier. This is clearest in the

top plot of Fig. 3, which has a dashed ellipse circling those data. Looking back over my

original notes during the measurement, the main difference between that data and all others

appears to be that I attempted to fine tune the value of C0 by loosening the tension of the

outer foil layer significantly. Unfortunately, I did not double check the value of C0 after

the resonant frequency measurements, as I usually did with other data points. Therefore, a

potential explanation is that the outer layers were disturbed as the wiring to the solenoid was

changed, altering the value of C0 after it was measured and before the resonant frequency

measurements. This would be consistent if C0 decreased between measurements by about 3

nF (∼ −25%), which is not small but not inconceivable.

The 150 nF data (black squares) have such large error bars that they appear nearly

useless. However, the variation between data points seem to be much less than the error

bars, again excluding an outlier at C0 ≈ 12 nF (not adjusted). Numerically, the error

bars are mostly due to the uncertainty δCload ≈ 0.003Cload, which is shared by each point.

(Notice, for example, that the error bars are roughly uniform in size, even at the lowest value

of C0.) This suggests that the error bars are instrumentally limited by the lack of knowledge

of Cload, so they overestimate the measured slope uncertainty. The negative values of the

data for C0 < 2 nF and the overall appearance of the data being parallel to but offset from

the dashed line provide some support for this.

Last but far from least interesting, the 5 nF data (green circles) have rather small error

bars and deviate significantly from the Miller capacitance after C0 is adjusted. However,

note that once C0 is near or above 5 nF (adjusted), the Miller capacitance is no longer the

expected result for this data. Instead, as C0 increases above Cload, the self capacitance in

a transmission-line model should transition towards a slope of 4/π2, as shown in Fig. 13

(top right) of Ref. 3. That is what appears to occur, except again for the suspected outlier.

Below about 5 nF (adjusted), the data slightly favor the Miller capacitance, but the error

bars are comparable to the difference between both slopes. Out of curiosity, I did manually

test the (4/π2)C0 result also by measuring the bare solenoid with no load (Cload = 0), but

while it did seem to agree, I was not as confident in my pF-range error analysis.

Interestingly, the trend of higher Cload leading to lower self capacitance in Fig. 3(top) is

mostly but not completely explained by the adjustment for the frequency-dependent dielec-

tric in Fig. 3(bottom). Much of this may be due to a systematic offset from an instrumentally

limited precision δCload, as discussed above. Additionally, there might be a contribution from
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error due to the resonance fit residuals, which may depend on frequency and thus also Cload.

Overall, the most significant challenge of this surprisingly tedious experiment was discov-

ering and then correcting for the systematic error of using printer paper. Improved results

should be possible by carefully choosing a more frequency-independent and lower loss dielec-

tric to wrap the solenoid. Finally, one amusing phenomenon of the setup was that resonance

could be heard audibly with large driving voltages (& 20 Vpp).
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FIG. 3. Test results. Both plots show the solenoid self capacitance Cself versus the uniform

capacitance C0. Dashed lines show the slope of 1/3 expected for CMiller in (2) and the slope of

4/π2 expected for an unloaded transmission-line model from Ref. 3 (c.f., Fig. 13 top right). The

circled data for C0 ≈ 12 nF are suspected to be outliers from a disturbance to the foil electrode

between C0 and f1 measurements. In the bottom plot, the values of C0 have been adjusted to

attempt to remove a systematic error from using a frequency-dependent paper dielectric.
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