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TL;DR: One-dimensional discrete network and continuous transmission-line toy

models for close-wound solenoid inductors.

It’s interesting that a solenoid inductor made from a single layer of closely wound wire

can behave like a simple uniform transmission line, because of all the inductive and capac-

itive couplings between the turns. To explore how that works, this note derives modified

Telegrapher’s equations from a discrete model of a network of coupled turns and examines

various approximations and properties. This was useful for some of my previous work.1–3
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FIG. 1. Setup. (a) Solenoid as a transmission line with its grounded environment as the second

wire. (b) Network model unit cell for the n-th turn. Does not show inter-turn couplings except for

nearest-neighbor capacitances. The unit cells for continuous transmission-line models are similar.

I. SETUP

This note’s meant to complement the resources I’ve found on solenoids for my own refer-

ence.a Solenoids are very well understood, of course, but detailed treatments tend to jump

straight to approximate field models like the sheath helix. Instead, the approach here pro-

vides toy models starting from a network point of view with a clear circuit interpretation.

The closest works I’ve found are Refs. 4–8, which are mentioned below.

To begin, consider a solenoid like the one shown in Fig. 1(a). Let’s assume it’s made of

a single layer of wire that’s reasonably closely wound around a cylindrical form with an air

core (non-magnetic, non-conductive). The wire by itself is a classic example of a two-wire

transmission-line system, with its environment serving as the second wire. Winding the wire

into the solenoid introduces new longitudinal couplings between the different segments of

the wire. These couplings make such a coiled transmission line rather different than a classic

straight transmission line. To examine how, let’s assume that there are a large number N of

turns (e.g., N � 10) and that the current and voltage vary little across each individual turn.

We can then approximately model each turn with a lumped-element equivalent circuit like

the unit cell shown in Fig. 1(b). Starting from a unit cell, we can setup a discrete network

model and then convert it to a continuous model similar to the Telegrapher’s equations for

a Also, to finally compile and complete some old notes leftover mainly from graduate school.
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a transmission line.

To keep things simple, let’s ignore coupling with other external circuits. For a related

treatment of that topic, please see Refs. 1 and 2, which also discuss simplifying transmission-

line models back to lumped-element equivalent circuits.

II. NETWORK MODEL

Consider a network of N turns indexed by n ∈ [1, N ]. Let Vn(t) and In(t) be the voltage

and current for the n-th turn, as sketched in Fig. 1(b). Let n = 0 be the input to the first

turn (n = 1) and n = N be the output after the last turn (n = N). By convention, each

current In(t) is positive when it flows towards higher n.

For each unit cell like the one in Fig. 1(b), the voltages and currents evolve as

Vn(t)− Vn−1(t) = −
(
Rn + Ln

d

dt

)
In(t) + Vtt,n(t) (1)

In+1(t)− In(t) = −
(
Gn + Cn

d

dt

)
Vn(t) + Itt,n(t) (2)

whereRn is a series resistance, Ln a series inductance, Gn a shunt conductance (normally zero

for a solenoid), and Cn a shunt capacitance. The remaining terms are voltage and current

sources from the inter-turn couplings. While Fig. 1(b) only shows capacitive couplings

between nearest neighbors, the general forms for these couplings are

Vtt,n = −
∑
j 6=n

Mnj
d

dt
Ij(t) (3)

Itt,n =
∑
j 6=n

Cnj
d

dt
[Vj(t)− Vn(t)] (4)

where Mnj is a mutual inductance, Cnj is a mutual capacitance, and the sums include all

other turns. These coupling coefficients are reciprocal: Mnj = Mjn and Cnj = Cjn.

Together, Eqs. (1)–(4) form a network model for the solenoid. Rearranging terms, here

are two additional ways to present the same model. The first way resembles the Telegrapher’s

equations with differential turn couplings for both voltage and current:

Vn(t)− Vn−1(t) = −

(
Rn +

N∑
j=1

Mnj
d

dt

)
In(t) +

N∑
j=1

Mnj
d

dt
[In(t)− Ij(t)] (5)

In+1(t)− In(t) = −
(
Gn + Cn

d

dt

)
Vn(t) +

N∑
j=1

Cnj
d

dt
[Vj(t)− Vn(t)]. (6)

Let’s call this the “telegraph form.” It’s particularly convenient for approximations to come.

As written, the sums are complete (as we’ll need later) though some diagonal terms do not

contribute. The form assumes the diagonal mutual inductances are self inductances,

Mnn = Ln, (7)
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which is a useful convention. However, it doesn’t require us to define Cnn yet. Visually, this

form suggests that the inter-turn couplings do not affect the shunt capacitance while they

do contribute to the series inductance. As we’ll see below, this is misleading because the

usual circuit coefficient Cn already includes contributions from the other turns.

The second way is a very concise form:

Vn(t)− Vn−1(t) = −RnIn(t)−
N∑
j=1

Mnj
d

dt
Ij(t) (8)

In+1(t)− In(t) = −GnVn(t) +
N∑
j=1

Cnj
d

dt
Vj(t). (9)

Let’s call this the “compact form.” As written, the sums are complete and all terms con-

tribute. In addition to (7), this form assumes the mutual capacitances

Cnj = −Cnj (10)

are negative values of the capacitance matrix C, as described in the next section. This sets∑
j

Cnj = −Cn (11)

which is a useful convention.

The energy stored by the solenoid as a network is

U =
1

2

N∑
n=1

Ln〈In(t)2〉+
1

2

N∑
n=1

∑
j 6=n

Mnj〈In(t)Ij(t)〉

+
1

2

N∑
n=1

Cn〈Vn(t)2〉+
1

4

N∑
n=1

∑
j 6=n

Cnj〈[Vn(t)− Vj(t)]2〉

=
1

2

N∑
n=1

N∑
j=1

Mnj〈In(t)Ij(t)〉 −
1

2

N∑
n=1

N∑
j=1

Cnj〈Vn(t)Vj(t)〉 (12)

where brackets denote a time average. The second version follows from (7), (10), and (11).

A. Connecting with the capacitance matrix

The coefficients Cn and Cnj are related to the capacitance matrix C of electrostatics, which

has many useful properties. For background, I recommend Refs. 9 and 10. The coefficients

of the capacitance matrix for a group of N conductors are defined by the relationship

Qn =
∑
j

CnjVj (13)
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between their charges Qn and voltages Vj. The diagonal terms Cnn are known as coefficients

of capacity and are the self capacitances of each conductor when all others are grounded. The

off-diagonal terms Cnj are known as coefficients of induction. Some important properties:

Cnj = Cjn, Cnn ≥ 0, Cnj ≤ 0 (n 6= j), and Cnn ≥ −
∑
j 6=n

Cnj. (14)

Last but not least, the convention (11) follows from the assignment Cnj = −Cnj of (10) and

N∑
j=1

Cnj = Cn ≥ 0. (15)

This property is a little subtle in that it assumes the sum doesn’t include a bounding con-

ductive environment (or when there is none, an effective conductor at the point at infinity).9

This property shows that Cn secretly includes inter-turn couplings, and with (14) that those

terms reduce (shield) the value of Cn from the larger value Cnn that it’d be for the turn

when all other turns are grounded.

We can use the capacitance matrix as long as we assume the solenoid behaves quasistat-

ically. To make the connection clear, let Qn be the charge of the n-th turn, which is the

same as that on the top plate of Cn. Then the turn current differences

In+1 − In = −GnVn −
dQn

dt
. (16)

Using (13), the capacitor currents

dQn

dt
=

N∑
j=1

Cnj
dVj
dt

=

(
N∑
j=1

Cnj

)
dVn
dt

+
N∑
j=1

Cnj
d

dt
[Vj(t)− Vn(t)]. (17)

Together, (16) and (17) with (10) and (11) recover (6).

The quasistatic energy for static potentials using the capacitance matrix is

U =
1

2

N∑
n=1

QnVn =
1

2

N∑
n=1

N∑
j=1

CnjVnVj, (18)

where the factor of 1/2 comes from the work of placing the charges:
∫ Q
0
qV dq = QV/2.

Accounting for time variation, the is the same as the capacitive part in the second version of

(12), and recovers the first version using the substitution VnVj = 1
2

[
V 2
n + V 2

j − (Vn − Vj)2
]
.

III. CONTINUOUS APPROXIMATION

At this point, we have a network model that’s suitable for numerical work but a little

awkward for further exploration. To keep going, let’s convert the network model to a

transmission-line one by making the following connection between discrete and continuous

parameters. This connection does not uniquely determine the continuous model, but instead

provides a correspondence for when they should be approximately equivalent.
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To proceed, let the solenoid have a height H and a uniform turn spacing h = H/N (center

to center). For each position x along the solenoid, let the voltage and current be V (x, t) and

I(x, t). Then we can connect the circuit variables as

Vn(t) = V (xn, t) and In(t) = I(xn, t) (19)

where xn = nh is an approximate location for the n-th turn.

Next, it’s tempting to take a continuum limit of infinite turns (N −→ ∞, h −→ 0, H

fixed). However, the finite value of h does capture the actual discrete nature of the turns,

and is important in relating the discrete and continuous parameters. In other words, real

solenoids likely have a hybrid mixture of discrete and continuous properties. Fortunately, we

can still proceed by noting that for a large number of turns, the first-order finite differences

are very nearly

Vn(t)− Vn−1(t) ≈
∂V (xn, t)

∂x
h (20)

In+1(t)− In(t) ≈ ∂I(xn, t)

∂x
h. (21)

Likewise, the sums that include all terms are Riemann approximations of definite integrals,

h
N∑
n=0

F (xn) ≈
∫ H

0

F (x)dx. (22)

There’s a subtlety in that the index n should start at n = 0 instead of n = 1, as in the

network model, but for us the n = 0 terms have null coefficients so do not contribute.

A. Relationship between parameters

With the above approximations, we’re nearly set. What’s left is to relate the discrete

parameters to new continuous ones. First, the core coefficients Rn, Ln, Gn, and Cn become

functions r(x), l(x), g(x), and c(x) with units distributed per length. Using the telegraph

form, the network model provides constraints for the values

r(xn) ≈ Rn/h, l(xn) ≈
N∑
j=1

Mnj/h, g(xn) ≈ Gn/h, and c(xn) ≈ Cn/h. (23)

Note that l(x) includes the effects of inter-turn coupling as arranged in the telegraph form.

Interpolating between these finite-sampled values has some freedom, but should be consistent

with integrals corresponding to sums at least globally and, ideally, locally (e.g.,
∫ H
0
r(x)dx ≈∑N

n=1Rn and
∫ h
0
r(xn + y)dy ≈ Rn).

Next, the inter-turn coupling coefficients Mnj and Cnj become functions m(x, y) and

c(x, y) with units distributed per length squared. Like the coefficients, these functions are

symmetric: m(x, y) = m(y, x) and c(x, y) = c(y, x). Using the Riemann approximation (22),

the network model suggests constraints for the values

m(xn, xj) ≈Mnj/h
2 and c(xn, xj) ≈ Cnj/h

2 = −Cnj/h
2. (24)
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Considering arbitrary voltage and current distributions, the interpolation between these

values is constrained by local integrals:
∫ h
0
m(xn, xj+y)dy ≈Mnj/h and

∫ h
0
c(xn, xj+y)dy ≈

Cnj/h. Globally, their integrals are constrained to be∫ H

0

m(x, y)dy = l(x) and

∫ H

0

c(x, y)dy = −c(x), (25)

where the negative sign for capacitance is a property from the capacitance matrix. Interest-

ingly, this means that c(x, y) abruptly reverses sign as x and y vary from being off-diagonal

to diagonal, x = y, where the peak values of c(x, x) are located. This peak behavior of

c(x, y) and its sharpness are controlled (and likely blunted) by the finite value of h. Like-

wise, m(x, y) reaches its peak values on the diagonal. For the typical case where all turns

have the same winding direction, m(x, y) should be positive everywhere and vary smoothly.

IV. TRANSMISSION-LINE MODEL

Using the approximations (20–22) and parameters of the last section, the network model

converts to a pair of coupled integro-differential equations. The telegraph form becomes

∂V (x, t)

∂x
= −

(
r(x) + l(x)

∂

∂t

)
I(x, t) +

∫ H

0

m(x, y)
∂

∂t
[I(x, t)− I(y, t)]dy (26)

∂I(x, t)

∂x
= −

(
g(x) + c(x)

∂

∂t

)
V (x, t) +

∫ H

0

c(x, y)
∂

∂t
[V (y, t)− V (x, t)]dy (27)

and the compact form becomes

∂V (x, t)

∂x
= −r(x)I(x, t)−

∫ H

0

m(x, y)
∂I(y, t)

∂t
dy (28)

∂I(x, t)

∂x
= −g(x)V (x, t) +

∫ H

0

c(x, y)
∂V (y, t)

∂t
dy. (29)

Likewise, the energy stored by the solenoid becomes

U =
1

2

∫∫ H

0

m(x, y)〈I(x, t)I(y, t)〉dxdy − 1

2

∫∫ H

0

c(x, y)〈V (x, t)V (y, t)〉dxdy, (30)

where the minus sign for the capacitive term follows from the capacitance matrix.

This model seems to agree with that used in numerical work by the TSSP [c.f., Ref. 4:

Eqs. (4.16) and (4.17) of pn2511 and Eqs. (2.1) and (2.2) of pn1401]. There is a minor differ-

ence in that the TSSP separated c(x, y) into internal (off-diagonal) and external (diagonal)

functions, while we merged them following the capacitance matrix. Additionally, TSSP in-

cludes some extra features to model the secondary coil of a Tesla transformer. We could add

most of them by treating a top capacitive load (toroid electrode) as an extra (n = N + 1)

turn and manually adding an inductive coupling with a primary coil. The pn2511 document

(c.f., Fig. 6.1) has an interesting discussion of how (27) usually predicts an internal point of

maximum current for the fundamental resonant mode in Tesla transformers.
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A. Notes on decoupling the equations

The classic Telegrapher’s equations for a uniform transmission line without inter-turn

coupling integrals are straightforward to decouple into equations for only voltage or current.

This follows by taking a spatial derivative of one equation and substituting in the other,

which gives

∂2V (x, t)

∂x2
=

(
r + l

∂

∂t

)(
g(x) + c(x)

∂

∂t

)
V (x, t) (31)

∂2I(x, t)

∂x2
=

(
r(x) + l(x)

∂

∂t

)(
g + c

∂

∂t

)
I(x, t). (32)

If the coefficients are uniform, the equations are the same for voltage and current. If some

coefficients are nonuniform then this approach doesn’t work simultaneously for both voltage

and current, but instead may work for one or the other as indicated above. Here and

subsequently, r, l, g, and c are the values of r(x), l(x), g(x), and c(x) if they are uniform.

For a solenoid, though, it doesn’t seem that there’s a general way to decouple the equa-

tions. It’s tempting to try integration by parts with the integrals to introduce spatial

derivatives, but this seems to be blocked by the antiderivatives of m(x, y) and c(x, y) being

constant with respect to the variable of integration. However, decoupling is straightforward

later using some approximations.

V. SIMPLIFIED TRANSMISSION-LINE MODELS

Next, let’s consider various approximations of the transmission-line model.

A. Long-wavelength approximation (lumped regime)

In the long-wavelength regime, the solenoid should behave like a simple lumped circuit

element. There are two straightforward cases that follow from the telegraph form. The first

case has spatially uniform current I(x, t) = I0(t). In this one, integrating (26) gives the

usual result for series conduction through a lumped inductor

V (H, t)− V (0, t) = −
(
R0 + L0

d

dt

)
I0(t) (33)

with total series resistance and inductance

R0 =

∫ H

0

r(x)dx =
N∑
n=1

Rn (34)

L0 =

∫ H

0

l(x)dx =
N∑
n=1

N∑
j=1

Mnj. (35)
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The voltage equation of the telegraph or compact form provide a consistency check for the

actual voltage profile that likely cannot be satisfied in general unless g(x) = c(x) = 0 or a

nonuniform current is allowed.

However, the stored energy (30) can be used to estimate an appropriate capacitance from

the voltage profile as

CU = −
∫∫ H

0

c(x, y)〈V (x, t)V (y, t)〉dxdy
/〈

[V (H, t)− V (0, t)]2
〉
. (36)

For the special case of a linear voltage profile V (x, t) = V0(t)(x/H), this reduces to

CU = −
∫∫ H

0

c(x, y)x y dxdy/H2. (37)

We can simplify this further with the substitution xy = [x2 + y2 − (x− y)2]/2, giving

CU =

∫ H

0

c(x)x2dx/H2 +

∫∫ H

0

c(x, y)(x− y)2dxdy/(2H2) &
∫ H

0

c(x)x2dx/H2. (38)

The lower bound should be a decent approximation because the factor of (x − y)2 in the

neglected integral should sharply suppress the dominant content in c(x, y) located about

x = y. There’s a subtlety in showing that this is a lower bound because of the change in

sign of c(x, y) in a finite region of width h about this diagonal, but appealing to the original

network model and its energy (12) clears this up. This is shown later for the local-coupling

approximation, which introduces an elastance S(2)
tt (x) such that∫∫ H

0

c(x, y)(x− y)2dxdy/(2H2) =
1

2H2

∫ H

0

1

S(2)
tt (x)

dx ≥ 0. (39)

For the particularly special case of a nearly uniform c(x) ≈ c, the lower bound reduces to

CU ≈
1

3
C0 (40)

for C0 = cH as defined below. I’ve called this the Miller self-capacitance of a solenoid

inductor in previous notes that derived it from modeling a Tesla transformer or tested it

with an actual solenoid.2,3 There’s an improved estimate

CU ≈
1

3
C0 +

1

2H2

∫ H

0

1

S(2)
tt (x)

dx ≈ 1

3
C0 +

1

2 S̄(2)
tt H

(41)

from adding back the other integral and optionally using the infinite-line approximation.

The second case has spatially uniform voltage V (x, t) = V0(t). In this case, integrating

(27) gives the usual result for parallel conduction across a wire tapped by a lumped capacitor

shunted to ground that steals some current

I(H, t)− I(0, t) = −
(
G0 + C0

d

dt

)
V0(t) (42)
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with total shunt conductance and capacitance

G0 =

∫ H

0

g(x)dx =
N∑
n=1

Gn (43)

C0 =

∫ H

0

c(x)dx =
N∑
n=1

Cn. (44)

Again, the current equation of the telegraph or compact form provides a consistency check

for the actual current profile that likely cannot be satisfied in general unless r(x) = l(x) = 0

or a nonuniform voltage is allowed.

The stored energy (30) can be used to estimate an appropriate inductance from the

current profile as

LU =

∫∫ H

0

m(x, y)〈I(x, t)I(y, t)〉dxdy
/〈

I(x0, t)
2
〉
, (45)

which is of a similar form as the capacitance CU above but references the current at one

position x0. In the special case of a linear current profile I(x, t) = I0(t)(x/H), say from the

solenoid acting as a capacitor fed from its top by a voltage source with its bottom left open

circuit, then you can use the same tricks to show that

LU =

∫∫ H

0

m(x, y)x y dxdy/H2 =

∫ H

0

l(x)x2dx/H2 −
∫∫ H

0

m(x, y)(x− y)2dxdy/(2H2)

(46)

.
∫ H

0

l(x)x2dx/H2. (47)

Here, the lower bound assumes m(x, y) is everywhere positive, which is normally true (uni-

form winding direction). Again, for the particularly special case of a nearly uniform l(x) ≈ l,

this reduces to

LU ≈
1

3
L0 (48)

for L0 = lH as defined above. We could call this the Miller self-inductance of a capacitor

because the same person also derived this for antennas over 100 years ago.11 Later, the

local-coupling approximation will introduce a reluctance R(2)
tt (x) such that∫∫ H

0

m(x, y)(x− y)2dxdy/(2H2) =
1

2H2

∫ H

0

1

R(2)
tt (x)

dx ≥ 0, (49)

where positivity assumes the winding direction is the same for all turns. This gives an

improved estimate

LU ≈
1

3
L0 −

1

2H2

∫ H

0

1

R(2)
tt (x)

dx ≈ 1

3
L0 −

1

2 R̄(2)
tt H

(50)

from adding back the other integral and optionally using the infinite-line approximation.
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B. Local-coupling approximation (converting integrals to derivatives)

At a place x along the solenoid that is far enough from the ends to not be influenced much

by them, the solenoid looks roughly like an infinitely long transmission line. Over a region

like this with properties that vary slowly or not at all with position, it seems reasonable

to wonder if there’s a way to simplify the inter-turn couplings to be more local. It turns

out there is a way to do this, by converting the global coupling integrals to sums of local

higher-order derivatives. This works for a finite line as treated here, and simplifies for a

nearly infinite line as shown in the next section.

Consider the telegraph form of the transmission-line model. Let’s assume our current

and voltage functions are well behaved enough to use a Taylor-series expansion such as

V (y, t) ≈
∞∑
p=0

(y − x)p

p!

∂pV (x, t)

∂xp
. (51)

Then, looking at the voltage inter-turn integral (ignoring a time derivative), we have∫ H

0

c(x, y)[V (y, t)− V (x, t)]dy ≈
∞∑
p=1

[
1

p!

∫ H

0

c(x, y) (y − x)pdy

]
∂pV (x, t)

∂xp
. (52)

Here, approximate signs warn that in general the series could potentially fail and that,

numerically, things could get interesting especially with truncation.

For the capacitive couplings, the series coefficients are position-dependent series dis-

tributed elastances (reciprocal capacitances)

1

S(p)
tt (xn)

=
1

p!

∫ H

0

c(xn, y) (y − xn)p dy ≈ 1

p!h

N∑
j=1

Cnj[(j − n)h]p (53)

for positive integers p = 1, 2, 3, . . ., because each S(p)
tt has units of Farad−1 meter1−p. (The

first with p = 1, though, isn’t distributed.) The coefficient S(2)
tt (H/2) has a simple inter-

pretation in the next section. The same approach works also for the current inter-turn

integrals. There, the series coefficients are position-dependent series distributed reluctances

(reciprocal inductances)

1

R(p)
tt (xn)

=
1

p!

∫ H

0

m(xn, y) (y − xn)p dy ≈ 1

p!h

N∑
j=1

Mnj[(j − n)h]p. (54)

Together, these new elastances and reluctances are properties of the solenoid. For even

p the coefficients are positive, but for odd p the coefficients can be positive or negative,

depending on position. (Positive reluctances here assume a single winding direction.) These

coefficients do not seem to converge for an infinitely long solenoid, so they are really only

defined for a finite length H. This probably follows from our quasistatic, lumped-circuit

approach that assumes all inter-turn couplings act instantaneously, no matter how distant.
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Using these new coefficients, the transmission-line model becomes

∂V (x, t)

∂x
≈ −

[
r(x) +

(
l(x) +

∞∑
p=1

1

R(p)
tt (x)

∂p

∂xp

)
∂

∂t

]
I(x, t) (55)

∂I(x, t)

∂x
≈ −

[
g(x) +

(
c(x)−

∞∑
p=1

1

S(p)
tt (x)

∂p

∂xp

)
∂

∂t

]
V (x, t). (56)

Let’s call this the local-coupling approximation. Following the same steps as above, the

energy (30) becomes

U ≈ 1

2

∫ H

0

l(x)〈I(x, t)2〉dx+
1

2

∞∑
p=1

∫ H

0

1

R(p)
tt (x)

〈
I(x, t)

∂pI(x, t)

∂xp

〉
dx

+
1

2

∫ H

0

c(x)〈V (x, t)2〉dx− 1

2

∞∑
p=1

∫ H

0

1

S(p)
tt (x)

〈
V (x, t)

∂pV (x, t)

∂xp

〉
dx. (57)

Note that the above expressions include both even and odd p terms. The dominant terms

are expected to be the even terms, as discussed in the next section, with coefficients that

reduce to roughly half their values near the edges. The odd terms are expected to be most

important near the edges, but highly suppressed in the interior.

Though it doesn’t look like it, (57) does agree with the results of the last section that

used S(2)
tt (x) or R(2)

tt (x) for the special case of a linear gradient. For example, for V (x, t) =

V0(t)(x/H), the straightforward result produces a term with −
∫ H
0
x[S(1)

tt (x)]−1dx instead of∫ H
0

[S(2)
tt (x)]−1dx. However, using (y − x)p = −[(−1)py(x − y)p−1 + x(y − x)p−1] with the

symmetry c(x, y) = c(y, x), you can show that those are equivalent, giving in general∫ H

0

1

S(p)
tt (x)

dx =
−[(−1)p + 1]

p

∫ H

0

x

S(p−1)
tt (x)

dx. (58)

The same relation holds for the reluctances.

Finally, note that the network model can also be modified similarly to use higher-order

finite differences.12 However, numerically computing higher-order finite differences seems less

straightforward than just doing the original sums.

C. Nearly infinite-line approximation (simplifying terms)

Building on the local-coupling approximation of the last section, assume the solenoid is

long enough such that within an interior region of interest the edges can be safely ignored,

as if they’re infinitely far away. Assume also that within this region the solenoid is approxi-

mately translationally invariant (locally uniform). Then the inter-turn coupling coefficients

are independent of position x within this region, at least approximately, and reduce to

M(δ) = M(−δ) ≈Mn,n+δ = Mn+δ,n ≈Mn,n−δ = Mn−δ,n (59)

C(δ) = C(−δ) ≈ Cn,n+δ = Cn+δ,n ≈ Cn,n−δ = Cn−δ,n (60)
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for the network model using an inter-turn distance index δ and likewise

c(δ)(x− y) = c(δ)(y − x) ≈ c(x, x+ y) = c(x+ y, x) ≈ c(x, x− y) = c(x− y, x) (61)

m(δ)(x− y) = m(δ)(y − x) ≈ m(x, x+ y) = m(x+ y, x) ≈ m(x, x− y) = m(x− y, x) (62)

for the transmission-line model, where the subscript “(δ)” only indicates this approximation.

Using these, the elastances and reluctances of the last section are then

1

S(p)
tt (xn)

=
1

p!

∫ H−xn

−xn
c(δ)(y) yp dy ≈ 1

p!h

N−n∑
δ=−n

C(δ)(δh)p (63)

1

R(p)
tt (xn)

=
1

p!

∫ H−xn

−xn
m(δ)(y) yp dy ≈ 1

p!h

N−n∑
δ=−n

M(δ)(δh)p, (64)

which is a different way of presenting the same results.

However, given our assumptions, these functions should be nearly independent of position.

They should be well approximated by their values at the center of the solenoid,

1

S̄(p)
tt

=
1

S(p)
tt (H/2)

=
1 + (−1)p

p!

∫ H/2

0

c(δ)(y) ypdy ≈ 1 + (−1)p

p!h

N/2∑
δ=1

C(δ)(δh)p ≥ 0 (65)

1

R̄(p)
tt

=
1

R(p)
tt (H/2)

=
1 + (−1)p

p!

∫ H/2

0

m(δ)(y) ypdy ≈ 1 + (−1)p

p!h

N/2∑
δ=1

M(δ)(δh)p ≥ 0, (66)

which are positive for even p and zero for odd p. That is, far from the edges, the odd p

terms are highly suppressed. Again, note that these values do depend on H and likely do

not converge for infinite H.

The first nonzero S(2)
tt (H/2) is related with the total capacitance formed by the network of

inter-turn capacitances:
∑N

δ=1 δ C(δ)/(N/δ) ≈
∑N/2

δ=1 C(δ)δ
2/N = 1/

[
S̄(2)
tt H

]
. This assumes

the high-order contributions for δ & N/2 are negligible and, as above, cavalierly uses N/2

as an upper bound for sums.

Using these new coefficients, the transmission-line model becomes

∂V (x, t)

∂x
≈ −

[
r +

(
l +

∞∑
p=1

1

R̄(2p)
tt

∂2p

∂x2p

)
∂

∂t

]
I(x, t) (67)

∂I(x, t)

∂x
≈ −

[
g +

(
c−

∞∑
p=1

1

S̄(2p)
tt

∂2p

∂x2p

)
∂

∂t

]
V (x, t). (68)

Let’s call this the (nearly) infinite-line approximation. Likewise, the energy (57) becomes

U ≈ 1

2
l

∫ H

0

〈I(x, t)2〉dx+
1

2

∞∑
p=1

1

R̄(2p)
tt

∫ H

0

〈
I(x, t)

∂2pI(x, t)

∂x2p

〉
dx

+
1

2
c

∫ H

0

〈V (x, t)2〉dx− 1

2

∞∑
p=1

1

S̄(2p)
tt

∫ H

0

〈
V (x, t)

∂2pV (x, t)

∂x2p

〉
dx, (69)

which only has even order terms. This only works within the region of interest, far from the

edges.
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D. Neglecting all but capacitances between neighboring turns

There’s a special case of the infinite-line approximation that appears in Refs. 5–8. This

case focuses on the capacitive couplings between nearest-neighbor turns and otherwise as-

sumes a uniform transmission line. Using the last section’s results, this gives

∂V (x, t)

∂x
≈ −

[
r + l

∂

∂t

]
I(x, t) (70)

∂I(x, t)

∂x
≈ −

[
g +

(
c− 1

S̄(2)
tt,1

∂2

∂x2

)
∂

∂t

]
V (x, t) (71)

which is a uniform line with the first elastance term kept. However, in this case, the elastance

coefficient is slightly different, in that it accounts only for the coupling between neighboring

turns: S̄(2)
tt ≈ S̄

(2)
tt,1 = 1/(C(1)h). Refs. 6–8 call this coefficient the series-capacitance param-

eter and dive into estimating and measuring it. Ref. 5 pointed out that it’s an elastance,

which is what tipped me off to call the new coefficients in the last two sections elastances and

reluctances. (Both are neat examples of the many delightful electromagnetic terms coined

by Oliver Heaviside.)

This minimal model is likely the simplest approximation that adds in some of the effects of

non-ideal capacitances in a solenoid inductor. As we’ll see later, it predicts a high-frequency

cutoff (and a low-frequency cutoff if r, g 6= 0), capturing an important feature of solenoid

dispersion relations. Note that it follows directly from the network model because

N∑
j=1

Cnj[Vj(t)− Vn(t)] ≈ C(1)[Vn−1(t) + Vn+1(t)− 2Vn(t)] ≈ C(1)
∂2V (xn, t)

∂x2
h2, (72)

using the definition of a second-order centered finite difference.12

E. Harmonic-signal approximation (spatial Fourier transform)

Consider voltages and currents that are proportional to exp(ikx) just like typical spatial-

harmonic waves on uniform transmission lines. For traveling waves, the sign of k indicates

direction (k = ±|k| propagates towards ±x̂ for an e−iωt time dependence). Assuming this

form of solution, we could simplify things by direct substitution or by using the local-coupling

or infinite-line approximations. However, there are some subtleties with consistency, because

generally such solutions are coupled by the model. To proceed, let’s use Fourier transforms13

to safely explore and then return to substitution and those approximations.

Let’s use Fourier transforms13 with the convention

F [P (t)](k) =

∫ ∞
−∞

P (x, t)e−ikxdx (73)

where P (x, t) is an arbitrary function, F [P (t)](k) is its spectrum, and k is a wavenumber.
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The inverse is P (x, t) = (2π)−1
∫∞
−∞F [P (t)](k)eikxdk. Some transforms13 we’ll need are

F [∂P (t)/∂x](k) = ikF [P (t)](k) (74)

F [P1P2](k) = (F [P1] ∗ F [P2])(k)/(2π) (75)

F [(P1 ∗ P2)](k) = F [P1](k)F [P2](k) (76)

F [eik0x](k) = 2πδ(k − k0) (77)

where δ(x) is a Diract delta function and the star notation means a convolution of the form

(P1 ∗ P2)(x) =

∫ ∞
−∞

P1(x− y)P2(y)dy. (78)

To use these, treat the voltages and currents as if they have infinite domain (x ∈ [−∞,∞])

and set the coupling parameters to zero outside the solenoid (x /∈ [0, H]).

Starting with the compact form of the transmission-line model, there’s no obvious way

to decouple solutions with different values of k. However, note that if we follow the setup

of the infinite-line approximation, then the coupling integrals are convolutions:∫ H

0

c(x, y)V (y, t)dy ≈
∫ H

0

c(δ)(x− y)V (y, t)dy ≈
∫ ∞
−∞

c(δ)(x− y)V (y, t)dy,= [c(δ) ∗ V (t)](x).

(79)

Then, taking the transform of the compact form gives

ikF [V (t)](k) ≈ − 1

2π
(F [r] ∗ F [I(t)])(k)−F [m(δ)](k)

∂

∂t
F [I(t)](k) (80)

ikF [I(t)](k) ≈ − 1

2π
(F [g] ∗ F [V (t)])(k) + F [c(δ)](k)

∂

∂t
F [V (t)](k). (81)

This shows that the inter-turn couplings are now decoupled, but that any spatial dependence

in r(x) or g(x) generally leads to couplings between different values of k. If we assume those

loss coefficients are uniform, then the equations are fully decoupled:

ikF [V (t)](k) ≈ −rF [I(t)](k)−F [m(δ)](k)
∂

∂t
F [I(t)](k) (82)

ikF [I(t)](k) ≈ −gF [V (t)](k) + F [c(δ)](k)
∂

∂t
F [V (t)](k). (83)

This is the Fourier transform of the infinite-line approximation, showing that it is decoupled

for spatial harmonic solutions.

To clean things up a bit, let the circuit variables have the form

V (x, t) = V (t)eikx and I(x, t) = I(t)eikx. (84)

Then using these with the above result and integrating out the delta functions gives

ik V (t) ≈ −
[
r + l(k)

∂

∂t

]
I(t) (85)

ik I(t) ≈ −
[
g + c(k)

∂

∂t

]
V (t), (86)
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where the effective distributed inductance and capacitance parameters are

l(k) = F [m(δ)](k) =

∫ ∞
−∞

m(δ)(x)e−ikxdx (87)

c(k) = −F [c(δ)](k) = −
∫ ∞
−∞

c(δ)(x)e−ikxdx. (88)

Let’s call this the harmonic-signal approximation. Note that it is equivalent to the infinite-

line approximation and rests on its same assumptions. In fact, using the series ex =∑∞
p=0 x

p/p! and truncating the domains of c(δ)(x) and m(δ)(x) to x ∈ [−H/2, H/2] gives

l(k) = l +
∞∑
p=1

(−1)pk2p

R̄(2p)
tt

= l − k2

R̄(2)
tt

+
k4

R̄(4)
tt

− . . . (89)

c(k) = c−
∞∑
p=1

(−1)pk2p

S̄(2p)
tt

= c+
k2

S̄(2)
tt

− k4

S̄(4)
tt

+ . . . , (90)

connecting this with the results of the infinite-line approximation after substitution.

If we assume a time dependence of the form V (t), I(t) ∝ e−iωt, then this harmonic-

signal approximation gives a dispersion relation ω(k). Substitution and decoupling gives the

quadratic equation −k2 = [r − iω l(k)][g − iω c(k)], whose solutions are

ω(k) = − i
2

(
r

l(k)
+

g

c(k)

)
±

√
k2

l(k)c(k)
− 1

4

(
r

l(k)
+

g

c(k)

)2

. (91)

Ignoring losses, the dispersion relation simplifies to

ω(k) =
±k√
l(k)c(k)

. (92)

For the special case of the last section, this simplifies to

ω(k) =
±k√

l
(
c+ k2/S̄(2)

tt,1

) , (93)

which has a high frequency cutoff of |ω(k)| ≤ |ω(∞)| =
√
S̄(2)
tt,1/l, about which the turns

resonate and above which azimuthal symmetry presumably breaks for propagation.

Finally, note that you can recover the results of the local-coupling approximation using

direct substitution. From the compact form, this follows from∫ H

0

m(x, y)I(y, t)dy = I(x, t) e−ikx
∫ H

0

m(x, y)eikydy

= I(x, t)

∫ H

0

m(x, y){cos[k(y − x)] + i sin[k(y − x)]}dy, (94)

and from the telegraph form, from eikx − eiky = eikx {1− cos[k(y − x)]− i sin[k(y − x)]}.
Using Taylor series for sine and cosine, the sine parts lead to the odd p terms and the cosine
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parts to the even p terms. However, there will in general be couplings between different

values of k using the local-coupling approximation, so some care is needed using substitution

directly. To show that this is consistent with the harmonic-signal approximation, note that

e−ikx
∫ H

0

m(x, y)eikydy ≈
∫ ∞
−∞

m(δ)(x− y)e−ik(x−y)dy = F [m(δ)](k) (95)

following the assumptions of the infinite-line approximation.

F. Uniform-line approximation discussion

All together, the last sections suggest that a uniform-line approximation with constant

coefficients is reasonable when the (nearly) infinite-line approximation applies and you’re

interested in a narrow wavelength (frequency) range below the first cutoff and away from

significant dispersion, such as the small-k regime or a narrow region about a specific k value.

Otherwise, you have to have some reason to neglect edge effects or to expect to have weak

inter-turn couplings (say, relatively suppressed by a coaxial ground sheath as in Ref. 3). All

of this isn’t really surprising, though, because the infinite-line approximation basically is an

appeal to Floquet theory. That said, it was fun to dig in to many of the details.

VI. ESTIMATING LINE PARAMETERS

For convenience, here are notes on estimating parameters for a solenoid that’s a right

cylindrical winding of single-strand wire with N turns, diameter (center-to-center) D, height

(edge-to-edge) H, turn spacing (center-to-center) h = H/N , and winding pitch angle

ψ ≈ arctan[h/(πD)] (96)

with respect to a circumference (φ = 0 for N −→∞).

A. Resistances

Roughly speaking, the resistance r(x) should be decently uniform except right near the

edges. The value r(x) ≈ r can be estimated from measurements of R0 with an LCR meter

or by using wire property tables and empirical frequency corrections. Measurements of R0

for an example solenoid with properties given in Refs. 3 and 14 showed little to no variation

from 100 to 10,000 Hz. Frequency corrections include skin and proximity effects, and rough

estimates for single-layer solenoids can be found in textbooks like Ref. 15 or older radio

engineering textbooks. For much more on all of this, see Ref. 16. The tape helix model

provides an estimate of r(k) that is supposed to match traveling-wave tube applications well

(c.f., Ref. 22).
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B. Inductances

Here are some ways to analytically estimate L0, Mnj, l(x), m(x, y), l(k), R(2p)
tt (x), and

R̄(2p)
tt . For more precise work, there are programs available like FEMM and FastHenry to

estimate Mnj. For a deep dive on inductance calculations, see Refs. 17–19. In general, the

inductance l(x) should be roughly uniform in the center of the solenoid but decrease near

the edges. For plots of numerical examples of m(x, y), see Fig. 3.1 of TSSP pn2511.4

For the uniform-current self inductance L0 of the solenoid, the standard result for an

ideal, infinitely long solenoid with a non-magnetic core is

L0 ≈ L∞ = µ0πN
2D2/(4H) (97)

where µ0 is the vacuum permeability. For a real solenoid, the Wheeler formula

L0 ≈ LWheeler = µ0πN
2D2/(4H + 1.8D) (98)

is more accurate. Even more accuracy is possible using the magnetostatic approach below,

and a particularly simple “handbook” formula for the result is available in Ref. 20. Inter-

estingly, L0 ∝ N2 follows from the majority of the self inductance coming from the mutual

inductances Mnj with n 6= j. This is also why l(x) decreases near the edges (there, half the

solenoid’s missing). Measurements of L0 for an example solenoid with properties given in

Refs. 3 and 14 showed little to no variation from 100 to 100,000 Hz.

Magnetostatics provides an estimate for Mnj, ignoring eddy currents. Using Ref. 21 (c.f.,

pp. 192-3, Eqs. (10-16)], the mutual inductance between two coaxial circular loops of radii

a and b spaced an axial distance d apart is

M(a, b, d) = µ0

√
ab (2/q)

[
(1− q2/2)K(q)− E(q)

]
where q2 =

4ab

d2 + (a+ b)2
(99)

and the complete elliptic integrals of the first and second kind are

K(x) =

∫ π/2

0

dφ√
1− x2 sin2 φ

. and E(x) =

∫ π/2

0

√
1− x2 sin2 φ dφ. (100)

(In Mathematica, K(x) is EllipticK[x2] and E(x) is EllipticE[x2].) This provides an estimate

Mnj = M [D/2, (D − h)/2, h(n− j)] (101)

that uses h following the approach of Ref. 21 to avoid failure when a = b for the self

inductance. For thin wires, this gives the usual result

Ln = Mnn ≈M [D/2, (D − h)/2, 0] ≈ µ0(D/2) [ln(8D/h)− 2] . (102)

This approach is consistent with the ideal and Wheeler values for L0, and could be used to

estimate l(x), m(x, y), l(k), R(2p)
tt (x), and R̄(2p)

tt .

The sheath helix model22,23 provides an estimate of the harmonic case

l(k) ≈ µ0I1(kD/2)K1(kD/2)

2π tan(ψ)2
≈ 2L∞

H
I1(kD/2)K1(kD/2), (103)
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for a non-magnetic core with H =∞, where In(x) and Kn(x) are modified Bessel functions of

the first and second kind, respectively. (If I haven’t goofed the transcription.) Numerically,

l(k) = L∞/H for small k and then decreases monotonically as k grows. Using Mathematica,

expanding in k readily gives a series in even powers of kD,

l(k) ≈ L∞
H

{
1 + 0.1250 [ln(kD)− 1.059] (kD)2 + 0.007813 [ln(kD)− 1.642] (kD)4 + . . .

}
,

(104)

and each coefficient for the k2p term provides an estimate of R̄(2p)
tt .

It’s interesting to note that you could significantly alter things by changing the winding

direction of some turns or patches of turns, such as in a “folded” helix. For example, alter-

nating the winding direction with each turn (which is a little impractical) would significantly

impact all magnetic properties and reduce L0.

C. Capacitances

Here are some ways to estimate C0, c(k), and S̄(2)
tt . Otherwise, programs like FastCap

and FEMM can provide estimates of Cnj and thus most everything else. In general, the

capacitance c(x) should be roughly uniform in the center of the solenoid, but increase near

the edges (unless there’s shielding by nearby conductors to reduce this). For a deep dive,

note that it’s estimation is related to the surprisingly difficult problem of finding the charge

density on a thin straight wire.24 For plots of numerical examples of c(x) and c(x, y), see

Figs. 2.2 and 2.4 of TSSP pn2511.4

For the uniform-voltage self capacitance C0 of a finite solenoid, two standard results25

are

C0 ≈ CButler =

{
2π2Dε0/ ln(16D/H) H/D . 4

−2πHε0/[1 + ln(D/(4H))] H/D & 4
(105)

C0 ≈ CSmythe = ε0D
[
4.00 + 3.475(H/D)0.76

]
(106)

where ε0 is the vacuum permittivity. These assume no dielectric external to the coil, but the

effects of the coil form and wire insulation should be reasonably small (the field is shielded

in the interior and between turns for C0, though not for the inter-turn couplings). They

also assume no perturbing conductors are nearby. The Butler result is for hollow tubes and

should be widely applicable (Ref. 25 examined it for 1/4 < H/D < 200 and found a worst

error of about 4%). The Smythe case is for a solid right cylinder with conductive endcaps

and meant only for 1/8 < H/D < 8.

The sheath helix model22,23 provides an estimate of

c(k) =
2πε0

I0(kD/2)K0(kD/2)
. (107)

for a free coil (no dielectric) with H =∞. (If I haven’t goofed the transcription: There’s a

factor of 2 disagreement between my references.) Numerically, c(k) sharply increases from 0



20

before leveling, and then increases monotonically as k grows. Using Mathematica, expanding

in k readily gives a series in even powers of kD,

c(k) ≈ 2πε0

{
1

ln(kD)− 0.8091
+ 0.1250

(
ln(kD)− 1.309

[ln(kD)− 0.8091]2

)
(kD)2

+ 0.009766

(
ln(kD)2 − 2.668 ln(kD) + 1.904

[ln(kD)− 0.8091]3

)
(kD)4 + . . .

}
, (108)

and each coefficient for the k2p term provides an estimate of S̄(2p)
tt .

There is another way to estimate the first elastance S̄(2)
tt . In the long-wavelength approx-

imation, (41) provides the effective capacitance for a solenoid with a linear voltage gradient

and grounded at one end. The first term involves c(x), which assumes there is no energy

stored by electric fields inside the coil interior. However, when there is a linear voltage

profile, the electric field in the interior of the solenoid is expected to strongly resemble an

ideal parallel plate capacitor, at least for H � D. Therefore, the energy stored by such

internal fields provide a lower bound for the term involving the elastance. (Energy stored

by a similar gradient outside the solenoid is ignored.) This gives the estimate

1

S̄(2)
tt

≈ ε0πD
2

2
, (109)

which is twice the value of the related “series capacitance parameter” C ′s from Eq. (18) of

Ref. 8 because of a slightly different definition of these two parameters. Refs. 6–8 report

a typical value of about C ′s ≈ 0.2 pF m from theory and experiment. For the solenoid

described in Ref. 14, (109) gives a rough estimate of 1/S̄(2)
tt ≈ 0.4 pF m. Ref. 26 provides

theory and measurement of nearest-neighbor turn capacitances C(1), so could be used as an

alternate approach to estimate S̄(2)
tt ≈ S̄

(2)
tt,1.

D. Phase velocity and relationship between inductances and capacitances

In a classic uniform transmission line, the distributed inductance l and capacitance c are

constrained to give the speed of light

vc = 1/
√
µ0ε0 (110)

as their phase velocity: vp = ω(k)/k = 1/
√
lc = vc. This follows from connecting formulas

for the scalar and vector potentials by relating the local current density with the local charge

times a velocity vector along the wire direction.

In a solenoid, even with all the longitudinal couplings, it’s empirically known that the

axial phase velocity is approximately the speed of light along the winding direction,

vp ≈ vc sin(ψ), (111)

up to order unity, making solenoids “slow-wave” structures (e.g., p. 476 of Ref. 21). Re-

latedly, the resonances of an unloaded solenoid empirically tend to occur when the winding
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FIG. 2. Phase velocity for a solenoid estimated using (113) with (96), the uniform inductances

(97) or (98), and the uniform capacitances (105) or (106).

length is comparable to (but not exactlyb) a number of quarter or half wavelengths in free

space. In the sheath-helix model22,23 the axial phase velocity is

vp = vc tan(ψ)

√
I0(kD/2)K0(kD/2)

I1(kD/2)K1(kD/2)
. (112)

Numerically, tan(ψ) ≈ sin(ψ) for large N (small ψ), and this velocity is nearly vc for kD & 3

but grows above this to diverge as kD −→ 0.

This suggests that c(x) and l(x) [or c(k) and l(k)] are similarly related for a real solenoid:

l(x)c(x) ≈ 1/v2c (maybe?). Perhaps this could be used to estimate the more difficult to

calculate c(x) from the easier l(x)? This would only be true for certain circumstances

without environmental perturbation. For example, the shapes of l(x) and c(x) near the ends

are complementary in a way that roughly preserves their product l(x)c(x), but shielding from

nearby conductors tends to smooth c(x) but not l(x) near the edges. Perhaps there is a way

to think through how all the Mnj and Cnj coefficients, absent environmental perturbations,

may be related to show this? This note’s already too long as is, so, maybe for the future . . .

As a final teaser, note that we can estimate the phase velocity with the following trick

vp
vc sin(ψ)

≈ vp
vc tan(ψ)

≈ 1√
(l/µ0)(c/ε0) tan(ψ)

≈ π√(
L0

µ0DN2

)(
C0

ε0D

) (113)

using the uniform capacitance C0 and inductance L0. If you use the Butler or Smythe

formulas for C0 and the ideal or Wheeler formulas for L0, the effective phase velocity is very

nearly the speed of light along the winding as shown in Fig. 2. Note that L∞ and CButler

diverge at H/D = 0, so the only combination that doesn’t diverge is Smythe and Wheeler.

b For a numerical exploration, see “Wire length quarterwave” here: http://abelian.org/tssp/misc.html

http://abelian.org/tssp/misc.html
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FIG. 3. Dispersion data from Ref. 14. The error bars are too small to display. Includes a

sheath-helix estimate and an empirical fit curve that provides an estimate for S̄(2)tt,1.

E. Dispersion relation, resonances, and band structure

Solenoids are wave propagating media with periodic symmetry so are known to have band

structure. All of this note is restricted to the lowest so-called T0 band with azimuthal sym-

metry, below a first cutoff before azimuthally asymmetric bands begin. The harmonic-signal

approximation provided an estimate of the form of the dispersion relation ω(k). Roughly,

it’s shape can be probed by measuring the unloaded quarter- and half-wave resonances of

a finite solenoid, which could be used to infer parameters. Neat demonstrations of such

resonances worth looking up are old Seibt coils and the mood-ring-style images in Ref. 27.

Fig. 3 shows such data for the solenoid described in Ref. 14, treating the n-th resonance

as having k = πn/(2H) for n = 1, 2, 3 . . . Similar curves are shown in Refs. 6 and 7. Fig. 3

also includes the dispersion relation of the sheath helix model22,23

ω2 = v2c tan(ψ)2 k2
I0(kD/2)K0(kD/2)

I1(kD/2)K1(kD/2)
(114)

using (96), which ignores edge effects and assumes ε0 and µ0 everywhere. As shown, the

resemblance is not terrible but also not great.

Fig. 3 also includes a rough fit of the form (93) which gives vp(k = 0) ≈ 624,000 ± 6,000

m/s ≈ (0.00208± 0.00002)vc. For that solenoid, using (96) gives tan(ψ) ≈ 0.0013, which is

reasonably close (vp is expected to be larger than this from the sheath helix model for such

small kD). Assuming that simple form, the curvature coefficient provides an estimate of

1/
[
c S̄(2)

tt,1

]
= H/

[
C0 S̄(2)

tt,1

]
≈ 0.0000786 ± 0.0000085 m2. (There’s no meaningful difference

between using S̄(2)
tt and S̄(2)

tt,1 here.) Using an unreported measurement of C0 ≈ 22± 2 pF for

that solenoid,14 this gives 1/S̄(2)
tt,1 ≈ 0.0034 ± 0.0005 pF m, which is much less than estimates

discussed above. This disagreement likely comes from comparing a simplistic model fit with

crude energy estimates from above.
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Finally, it’s fun to suppose that such dispersion relations could be measured for a solenoid

wound out of coax. This way, you could compare the same geometry but with the inter-turn

capacitances allowed or shielded, depending on how you use the inner and outer conductors

of the coax.
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