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I. INTRODUCTION

My dissertation [2] presents measurements of the 0–0
pressure shifts of both 87Rb and 85Rb in Ar, Kr, and
Xe buffer gas [3]. These shifts are nonlinear with pres-
sure presumably because of short-lived van der Waals
molecules, each made of an alkali-metal atom weakly
bound to a noble-gas atom. Chapter 4 presents a the-
oretical model that accounts for the 87Rb data [4]. How-
ever, that model clearly fails for the data of 85Rb in Xe.
In the end, Chapter 4 suggests an improved model is
needed that considers additional spin interactions in the
molecules.

This note presents a detailed derivation of a candidate
for such an improved model. It expands the previous
model to include the next two interactions suspected to
contribute: the dipolar and quadrupolar hyperfine inter-
actions [5]. However, it differs significantly in its deriva-
tion, because expanding the previous model’s approach

of treating the bound alkali-metal atom as a weakly per-
turbed atom suffers quantization issues, despite giving
nearly the same results as presented here [6]. The new
model uses a more straightforward molecular spin eigen-
state approach that surprisingly avoids these issues by
including rotation in the eigenstates before taking a clas-
sical limit, instead of semi-classically in the interactions
[7, 8]. This approach also introduces small corrections for
the spin-rotation and Zeeman interactions. The model is
able to account for the shape of the nonlinearity observed
with 85Rb in Xe [6].

II. DERIVATION

A. Setup

In the time between collisions, a free alkali-metal atom
evolves according to a ground-state spin Hamiltonian

H0 = A I · S− µ ·B, (1)

where the first term is a Fermi-contact interaction cou-
pling the nuclear spin I and electronic spin S with a
magnetic-dipole coupling coefficient A. The second term
is a Zeeman interaction of the total magnetic-dipole mo-
ment µ = −gSµBS + gIµNI with an externally applied
magnetic field B of amplitude B = |B|. Here, gS is the
electronic g factor, µB is the Bohr magneton, gI is the
nuclear g factor, and µN is the nuclear magneton. Let
us assume that any external field is static and oriented
along the lab-frame Cartesian unit vector z, such that
B = Bz.

For atomic clocks, the field B is typically weak enough
that the dominant interaction in H0 is the hyperfine
coupling. The ground-state energy eigenstates are very
nearly the eigenstates |F m〉 of the total spin angular
momentum F = I + S with quantum number F and az-
imuthal quantum number m along z. The hyperfine cou-
pling splits the sublevels into upper and lower hyperfine
manifolds with total angular momentum

F =

{
a = I + 1/2,

b = I − 1/2,
(2)

respectively. The nuclear spin I and electronic spin S =
1/2 are good quantum numbers for these sublevels.

https://bartmcguyer.com/notes/note-15-vdWPressureShifts.pdf


2

Vapor-cell clocks measure transitions between these
hyperfine manifolds. To proceed, let us consider an “α–
β” hyperfine transition between the free-atom eigenstates

|α〉 = |aα〉 and |β〉 = |b β〉. (3)

The 0–0 (or “clock”) transition is conventionally used,
since it has no first-order dependence on the field B. Ide-
ally, without collisions, the measured resonant frequency
would be the Bohr angular frequency for the transition,

ωαβ = (Eaα − Ebβ)/~, (4)

where ~ is the reduced Planck constant and the energies
EFm = 〈F m|H0|F m〉. These frequencies are approxi-
mately

ωαβ ≈
A[I]

2~
+
gSµBB

[I]~
(α+ β), (5)

to first order in the field B and ignoring the small Zeeman
interaction with the nuclear spin. Here and subsequently,
the shorthand

[J ] = 2J + 1 (6)

of brackets about a single quantum number denotes its
spin multiplicity.

B. Pressure shifts from sticking collisions

We can calculate the pressure shift from molecule-
forming (or sticking) collisions using a density-matrix
approach as follows. The density operator ρ for ground-
state alkali-metal atoms evolves according to

∂ρ

∂t
= − i

~
[H0, ρ] +

〈
1

T

(
SρS† − ρ

)〉
, (7)

which for simplicity ignores the effects of optical pumping
as well as binary and other non-sticking collisions. The
first term on the right models free-atom evolution. The
second term models sticking collisions with angle brackets
denoting an ensemble average over molecules and their
formation rates 1/T . S is a scattering-matrix operator
that captures bound-atom evolution by converting the
wave function of a free atom into that of a free atom just
exiting a collisional perturbation, following Ch. 10 of [9].
For a particular molecule with lifetime τ , the S-matrix is

S = exp(−iH1τ/~) exp(iH0τ/~), (8)

where H1 is the spin Hamiltonian for the bound-atom
evolution. Here and subsequently, a bar denotes bound-
atom quantities.

The bound-atom spin Hamiltonian H1 includes addi-
tional interactions that only contribute during the time
spent in the molecule. For Rb, the most significant in-
teractions are expected to be the hyperfine-shift (hfs),

electronic spin-rotation (sr), dipolar-hyperfine (dh), and
quadrupolar-hyperfine (qh) interactions,

H1 ≈ H0 + Vhfs + Vsr + Vdh + Vqh, (9)

which are addressed below [5]. Other interactions are
present but assumed negligible, such as the nuclear spin-
rotation and octupole-hyperfine interactions. Interac-
tions with spins in the bound partner like spin exchange
are present, but measurements with different Xe isotopes
in [2] suggest they are negligible for typical buffer gases.
This may no longer apply if, for example, the buffer gas
is spin polarized.

In an ideal experiment, the measured α–β frequency
is equal to the precession frequency of the coherence
〈α|ρ|β〉. In the secular approximation, molecules from
sticking collisions produce a pressure shift

∆ν = −Im

〈
〈α|S|α〉〈β|S†|β〉

2πT

〉
(10)

of the temporal frequency of this coherence as well as
a corresponding damping [2]. As before, angle brackets
denote averaging over molecules.

For a given rovibrational state, the lifetime is ex-
pected to follow an exponential distribution with mean
τ . We can average over molecular lifetimes by integrat-
ing

∫∞
0
e−t/τ∆ν dt/τ after introducing bound-atom spin

eigenstates |µ〉 of H1 with energies Eµ = 〈µ|H1|µ〉. Av-
eraging then reduces the shift (10) to a sum over bound-
atom states

∆ν =
∑
µ,ν

〈
|〈α|µ〉〈ν|β〉|2 (ωµ ν − ωαβ)τ

2πT [1 + (ωµ ν − ωαβ)2τ2]

〉
, (11)

where the bound-atom Bohr frequencies are

ωµ ν = (Eµ − Eν)/~. (12)

Here, as with H1, a bar denotes bound-atom quantities.
Eq. (11) is the nonlinear pressure shift from molecules.

Its rough dependence on buffer-gas pressure p follows
from noting that the three-body formation rate 1/T ∝ p2
and the collision-limited lifetime τ ∝ 1/p. At low pres-
sures there is no shift, limp→0 ∆ν ∝ p3, but at high pres-
sures there is a linear shift, limp→∞∆ν ∝ p. Thus, the
rough shape of ∆ν with pressure is a gradual turning on
of a linear shift, with the detailed shape in between sen-
sitive to molecular parameters. One interpretation of the
shape of ∆ν versus the inverse lifetime 1/τ ∝ p is as an
interference pattern formed by all of the ways that an α–
β coherence may connect through a temporary molecule
via discrete µ–ν pathways, the interference of which de-
pends on τ .

In measurements, the dominant linear shift is typi-
cally that from binary collisions instead of sticking colli-
sions [10]. Therefore, it is convenient to artificially sepa-
rate the molecular shift into linear and nonlinear parts,

∆ν = sm p+ ∆2ν, (13)
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to highlight the nonlinearity that is due to sticking colli-
sions. Here, the infinite-pressure linear slope is

sm = lim
p−→∞

∆ν/p

=
∑
µ,ν

〈
|〈α|µ〉〈ν|β〉|2 (ωµ ν − ωαβ)τ

2πTp

〉
, (14)

and the remaining nonlinear shift is

∆2ν = ∆ν − sm p

= −
∑
µ,ν

〈
|〈α|µ〉〈ν|β〉|2 (ωµ ν − ωαβ)3τ3

2πT [1 + (ωµ ν − ωαβ)2τ2]

〉
. (15)

By construction, the nonlinear shift is zero at infinite
pressure, limp→∞∆2ν → 0, and as a result, is linear at
low pressure, limp→0 ∆2ν = −smp. To avoid confusion,
note that this nonlinear shift is not an actual pressure
shift, but instead is only a convenience for analyzing ex-
periments. The true nonlinear pressure shift is the total
molecular shift ∆ν of (11). We will focus on the non-
linear pressure shift ∆ν below and return to the linear,
limiting slope sm of (14) and nonlinear shift ∆2ν of (15)
to construct fitting functions.

To calculate these shifts, what remains is to determine
the bound-atom eigenstates |µ〉 and their energies Eµ
and to average over rovibrational states, their formation
rates, and their directions of rotation.

C. Introducing molecular spin eigenstates

To determine the bound-atom eigenstates |µ〉, we must
choose how to treat molecular rotation. Previous work
[2, 6] approximated rotation semi-classically in the inter-
actions and thus separately from quantum spins. How-
ever, the derivation of (11) with an S-matrix requires |µ〉
to be energy eigenstates. While bound, the true energy
eigenstates are the molecular spin eigenstates formed by
the coupling of alkali-metal atomic spins with molecular
rotation. Therefore, we will include rotation quantum
mechanically in the molecular spin states, connect them
with the bound-atom spin states, and then take a classi-
cal large-rotation limit. The energies for the interactions
considered agree to leading order for both approaches,
but their interpretation with respect to quantization is
different.

The molecules of interest are loosely bound heteronu-
clear diatomic molecules in their electronic ground states,
composed of a 1S0 noble-gas atom and a 2S1/2 alkali-

metal atom, with molecular term symbol X 2Σ+. Their
total electronic spin angular momentum S is solely due to
the alkali-metal atom, so the quantum number S = 1/2.
Their total orbital angular momentum L = 0, with axial
component Λ = 0, so these molecules follow Hund’s case
(bβS) with their electronic spin not strongly coupled to
the internuclear axis [11]. The total rotational angular

momentum of the nuclei is N with quantum number N .
As discussed above, we will ignore the nuclear spin from
the noble-gas atom.

The strongest spin interaction by far is expected to be
the Fermi-contact hyperfine coupling between I and S,
just as for the free alkali-metal atoms, so the resultant
F = I + S is still a good quantum number. The total
angular momentum for the molecule is then the resul-
tant G = F + N. Note that here, and subsequently, the
definitions of F and G are intentionally swapped com-
pared to those in Brown and Carrington [11], so that F
has the same definition for both ground-state atoms and
molecules.

As will be shown below, the Zeeman interaction with
B in (1) sets the quantization axis for the molecules, just
as for free atoms. The remaining spin-rotation, dipolar-
hyperfine, and quadrupolar-hyperfine interactions do not
depend on mG, just as the spin-orbit, dipolar-hyperfine,
and quadrupolar-hyperfine interactions in excited alkali-
metal atomic spin states do not depend on the total m.
Thus, for moderate applied magnetic fields or less, the
molecular spin eigenstates are very nearly the eigenstates

|ISF ;FNG;GmG〉 (16)

of the total spin angular momentum G with quantum
number G and azimuthal quantum number mG along z,
in the notation of Brown and Carrington [11]. As will be
shown below, G plays the role of m in a rotated, bound-
atom spin state, connecting this with previous work. For
convenience, let us use the shorthand

|FNGg〉 = |ISF ;FNG;Gg〉 (17)

with g = mG, when the values of I, S, and N are under-
stood. Note that for sufficiently strong applied magnetic
fields, there will be mixing between G states, just as be-
tween F states for free atoms.

To use these molecular eigenstates, first replace the
bound-atom eigenstates in (11) with the substitutions

|µ〉 −→ |F = a,N,G, g〉 (18)

|ν〉 −→ |F ′ = b,N,G′, g′〉 (19)∑
µ

∑
ν

−→
∑
G,g

∑
G′,g′

, (20)

where (3) set F and F ′. Then, replace the Bohr frequen-
cies (12) and bound-atom energies with the substitutions

ωµ ν −→ ωGg;G′g′ = (E|aNGg〉 − E|bNG′g′〉)/~ (21)

Eµ −→ E|aNGg〉 = 〈aNGg|H1|aNGg〉 (22)

Eν −→ E|bNG′g′〉 = 〈bNG′ g′|H1|bNG′ g′〉. (23)

Finally, the free-atom spin eigenstates have to be modi-
fied to include a tensor product,

|α〉 −→ |aα〉 ⊗ |ψN 〉 (24)

|β〉 −→ |b β〉 ⊗ |ψN 〉, (25)

with a rotational wave function |ψN 〉 that will be used
below to average over the direction of rotation.
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D. Large-N approximation

To simplify the matrix elements in (11), we will take
a classical limit of N � 1, which is justified for the
molecules of interest [12, 13]. The molecular spin eigen-
states decompose into atomic and rotational parts as

|FNGg〉 =
∑
m,mN

CGgFm,NmN
|F m〉 ⊗ |N mN 〉. (26)

For large N (and thus large G), the quantum number
F � G and N , and the Clebsch-Gordon coefficient is
approximately (Eq. 8.9.1(1) of [14])∣∣∣CGgFm,NmN

∣∣∣ ≈ δg,m+mN

∣∣∣d(F )
m,G−N (θGg)

∣∣∣ (27)

where the angle between G and the lab z axis is

θGg = arccos(2g/[G]). (28)

The Wigner “little” d-function [14] is

d
(F )
m,m(θ) = 〈F m| exp(−iθFy)|F m〉 (29)

where the the azimuthal quantum number

m = G−N ∈ [−F, F ], (30)

is that of an effective bound-atom state |F m〉.
Using (26) and (27) with (18) and (19), the matrix

elements in (11) simplify to

|〈α|µ〉|2 −→
∣∣∣d(a)α,µ(θGg)〈ψN |N, g − α〉

∣∣∣2 (31)

|〈ν|β〉|2 −→
∣∣∣d(b)β,ν(θG′g′)〈ψN |N, g′ − β〉

∣∣∣2 (32)

for large N . Here, the indices µ = G −N ∈ [−a, a] and
ν = G′ −N ∈ [−b, b], or equivalently G and G′, play the
role of m for rotated, bound-atom spin eigenstates, as in
previous work [2].

E. Averaging over the direction of rotation

The rotational wave function |ψN 〉may be decomposed
in terms of orthonormal Hund’s case (b) rotational spin
basis functions |N n〉 with Λ = 0 as |ψN 〉 =

∑
nBn|N n〉

[11]. Each sticking collision then corresponds to a choice
of coefficients Bn. To average over the direction of
rotation, we need to determine the statistical weights
〈BnB∗m〉 to use with (11).

To proceed, consider using an operator R(θ, φ, ψ)
with Euler angles (θ, φ, ψ) to rotate an arbitrary |ψN 〉
to a new direction. After this rotation, the coeffi-

cients are Bn(θ, φ, ψ) =
∑
mBm(0, 0, 0)D

(N)
n,m(θ, φ, ψ),

where the Wigner “big” D-function D
(N)
n,m(θ, φ, ψ) =

〈N n|R(θ, φ, ψ)|N m〉. Averaging uniformly over all

Euler-angle values then gives 〈BnB∗m〉 = δn,m/[N ] from
D-function orthogonality.

Therefore, to average over the direction of rotation,
replace the rotational wave function with

|ψN 〉 −→ |N n〉 (33)

and uniformly average over n. Note that, for large N ,
G ≈ G′ ≈ N and g ≈ g′ ≈ n in ∆ν. As a result, the an-
gles θGg ≈ θG′g′ and are approximately continuous. After
the substitution (33), this average is then approximately〈

∆ν

〉
ψN

=
1

[N ]

N∑
n=−N

∆ν ≈ 1

2

∫ 1

−1
∆ν d cos(θ) (34)

with a shared angle

θ ≈ θGg ≈ θG′g′ . (35)

Together with the substitutions (18)–(25), (31), and
(32), this makes the nonlinear pressure shift (11)

∆ν =
∑
µ,ν

∫ 1

−1

〈
fαβµ ν (θ)(ωµ ν(θ)− ωαβ)τ

4πT [1 + (ωµ ν(θ)− ωαβ)2τ2]

〉
d cos(θ),

(36)

where the angular weight functions

fαβµ ν (θ) =
∣∣∣d(a)α,µ(θ) d

(b)
β,ν(θ)

∣∣∣2 (37)

generalize those in Eq. (4.94) of [2]. The Bohr frequencies

ωµ ν(θ) = [E|a,N,G=µ+N,g=n+α〉(θ)

−E|b,N,G′=ν+N,g′=n+β〉(θ)]/~ (38)

depend on the shared angle θ of (35) and (28) if the
energies depend on n ≈ cos(θ)[N ]/2 via g or g′, which
occurs only for the Zeeman interaction as shown below.

F. Single-rovibrational-state approximation

The remaining average to complete is that over all rota-
tional and vibrational states allowed by the alkali-metal–
noble-gas interaction potential V (R) [15–18]. This av-
erage superposes the differing shifts from each rovibra-
tional state. Unfortunately, there is not enough informa-
tion available about the spin interactions of interest for
this to be tractable or trustworthy. Instead, to proceed
we will approximate this average using a single rovibra-
tional state with effective parameters, following previous
work. That is, we will assume the average is performed
over the parameters, keeping the functional form of the
shift unchanged.

In this approximation, the ∆ν of (36) becomes

∆ν =

(
1

4π〈T 〉

)∑
µ,ν

∫ 1

−1

fαβµ ν (θ)φαβµ ν(θ)

1 + [φαβµ ν(θ)]2
d cos(θ) (39)
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in terms of averaged molecular phase shifts

φαβµ ν(θ) = 〈[ωµ ν(θ)− ωαβ ]τ〉 (40)

that generalize mµνφ in previous work [2]. The remaining
brackets here, and subsequently, denote a rovibrational
expectation value assuming a single rovibrational state.

G. Interaction energies and fit parameters

Last, what remains is to evaluate the molecular inter-
action energies and their fit parameters. The calculations
are rather tedious [7], so only the results are summarized
here with references to Brown and Carrington [11]. The
results agree to leading order in 1/N with calculations
from a bound-atom approach [6], and include small ad-
ditional corrections to the spin-rotation and Zeeman en-
ergies.

For fitting, it is convenient to use pressure-independent
and isotope-independent parameters. Noting that τp
is very nearly pressure independent, let us introduce a
molecular phase-shift parameter

(φαβµν (θ) p) = (φp)hfs + (φµνp)sr + (φαβµν (θ) p)Z

+ (φµνp)dh + (φµνp)qh (41)

with pressure-independent contributions from each inter-
action to be determined below. Isotope-independent fit
parameters for each contribution will be introduced for
each. The top line has the contributions from the three
interactions previously considered, including the Zeeman
(Z) interaction in (1). As shown below, only the Zeeman
contribution depends on α, β, and θ. The bottom line
has the contributions from the two new interactions not
previously considered.

1. Hyperfine-shift interaction (hfs)

The perturbation to the Fermi-contact interaction is
modeled by the hyperfine-shift interaction,

Vhfs = δA(R) I · S, (42)

where δA(R) is a potential that depends on internuclear
distance R and is generally expected to change sign at
least once for our molecules of interest [2, 5, 19–27]. This
interaction is diagonal in G and mG, and has the same
form as the Fermi-contact interaction in (1).

The molecular energies follow Eqs. (10.49) and (11.80)
in Brown and Carrington [11] and are the same as those
in the atomic case,

Ehfs
|FNGg〉 = 〈δA(R)〉1

4
{(F − b)[b] + (F − a)[a]} , (43)

where brackets denote a rovibrational expectation value.

The molecular phase-shift parameter

(φp)hfs =
〈δA(R) τ〉 p [I]

2~
= (ψp)hfs

gI [I]

2
(44)

is independent of µ and ν, and equal to (φp) in previous
work [2, 4, 28]. For fitting data, the parameter

(ψp)hfs =
〈δA(R) τ〉 p

gI~
(45)

(units of rad Torr) is pressure independent and very
nearly isotope independent, because A/gI is isotope in-
dependent up to a part-per-thousand hyperfine anomaly
for Rb [29, 30].

2. Spin-rotation interaction (sr)

The electronic spin-rotation interaction is

Hsr = γ(R)S ·N. (46)

where γ(R) is a potential that depends on internuclear
distance [5, 9, 31–33]. While the literature gives a gen-
eral impression that 〈γ(R)〉 should be positive, precision
measurements and theory confirm it is negative for LiAr
[34, 35]. This interaction can have multiple physical ori-
gins [11], but the most significant origin here is expected
to be the spin-orbit interaction in the noble-gas atom
[31]. This interaction is diagonal in G and mG.

The molecular energies follow Eqs. (10.48) and (11.85)
in Brown and Carrington [11],

Esr
|FNGg〉 =

(−1)F−a〈γ(R)〉
[I]

(
m〈N〉

+
m(m+ 1)− F (F + 1)

2

)
(47)

where m = G−N . The first term matches previous work
[2]. The second term is a correction of relative order
1/〈N〉 with a form that roughly resembles the dipolar
and quadrupolar energies below.

The molecular phase-shift parameters are

(φµνp)sr =
(ψp)sr

[I]

(
µ+ ν

+
2µ(µ+ 1) + 2ν(ν + 1)− 4I(I + 1)− 1

4〈N〉

)
(48)

using a pressure- and isotope-independent parameter

(ψp)sr = 〈γ(R)Nτ〉 p/~ (49)

(units of rad Torr). Ignoring the correction, this param-
eter is equivalent to r1φp(µ + ν) = limN→∞(ψµνp)sr/[I]
in previous work [2, 4]. The sign of (ψp)sr has an effect
only through the small 1/N correction term (48), which
contributes to both the nonlinear and linear shifts. This
correction term depends on (ψp)sr/〈N〉, so is indepen-
dent of N in the single-state approximation.

Table II provides estimates of (ψp)sr.
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3. Dipolar-hyperfine interaction (dh)

The electron-nuclear dipolar (or anisotropic hyperfine-
shift) interaction can be expressed in many forms [11].
For a strong coupling of I and S, the most convenient is

Vdh =
√

6gSµBgIµN

(µ0

4π

)
T 2(C) · T 2(S, I), (50)

following the notation of Eq. (1.56) in Brown and Car-
rington [11], where µ0 is the vacuum permeability and
T 2(C) is a tensor involving the alkali-metal valence elec-
tron position about its nucleus. This interaction is diag-
onal in G and mG. For reference, using Eq. (5.116) in
[11], an effective Hamiltonian for this interaction is

Vdh ≈ t0(R) I · (3R̂R̂− 1) · S, (51)

where the axial magnetic-dipole hyperfine coefficient
t0(R) measures the aspherical symmetry of the Rb va-

lence electronic wavefunction, R̂ is the internuclear axis
unit vector, and 1 is the unity dyadic tensor. The coef-
ficient t0 is related to the “Frosh and Foley” parameter
c = t0/3.

The molecular energies follow Eqs. (1.60), (8.513–
8.515), (10.50), and (11.81–11.84) in Brown and Carring-
ton [11]. The derivation includes a Wigner 9j symbol that
is available in Table 10.3 of [14]. These energies are

Edh
|FNGg〉 = (−1)F−b

〈t0(R)〉
2[I]

×
〈

3XF,m(XF,m − 1)− 4N(N + 1)F (F + 1)

(2N − 1)(2N + 3)

〉
(52)

for the quantities

XF,m = F (F + 1)−m(m+ [N ]) (53)

and m = G−N , assuming I ≥ 1/2. The brackets apply
to the remaining dependence on N .

The molecular phase-shift parameters are

(φµνp)dh =
gI(ψp)dh

2[I]

〈
2N(N + 1)[I]2 − 3Y +

µ,ν

(2N − 1)(2N + 3)

〉
(54)

for the quantity

Y ±µ,ν = Xa,µ(Xa,µ − 1)±Xb,ν(Xb,ν − 1) (55)

using a pressure- and isotope-independent parameter

(ψp)dh =
〈t0(R) τp〉

gI~
(56)

(units of rad Torr). For reference, the leading-order term
in a 1/〈N〉 expansion is

(φµνp)dh ≈ gI(ψp)dh
(

[I]

4
− 3(µ2 + ν2)

2[I]

)
. (57)

The first part resembles the hyperfine-shift interaction
and the second part modifies the shape of the nonlinear
shift.

Walker and Happer [5] provide an estimate for the
strength of this interaction for 85Rb with 131Xe. Not-
ing that the coefficient t0(R) = Ba(R) in Eq. (31) of [5],
Fig. 14 of [5] estimates |t0(R)| ≤ |γ(R)| for R ∈ [2, 4.5] Å,
which is just before the potential well in V (R) [15]. As-
suming this inequality holds generally for larger R, then
it gives a rough estimate of |(ψp)dh| ≤ |(ψp)sr|/(〈N〉gI) ≈
0.5 rad Torr for Rb in Xe using values in Table II.

4. Quadrupolar-hyperfine interaction (qh)

The nuclear electric quadrupole interaction can be ex-
pressed in many forms [11]. For a strong coupling of I
and S, the most convenient is

Vqh = −e T 2(Q) · T 2(∇E), (58)

following the notation of Eq. (1.28) in Brown and Car-
rington [11]. Here, Q is the quadrupole moment of the
alkali-metal nucleus. This interaction is diagonal in G
and mG. For reference, using Eqs. (5.116), (7.158), and
(7.192) in [11], an effective Hamiltonian for this interac-
tion is

Vdh ≈
eq0(R)Q

4I(2I − 1)
I · (3R̂R̂− 1) · I, (59)

where q0(R) is a standard measure of the electric field
gradient along the internuclear axis.

The molecular energies follow a derivation similar to
Eq. (9.93) and Appendix 8.4 in Brown and Carrington
[11] and uses Eqs. (5.173), (9.13-14), and (7.159) in that
reference. These energies are

Eqh
|FNGg〉 =

e〈q0(R)Q〉
4I(2I − 1)

(
(−1)F−a

[I]
− 1

2

)
×
〈

3XF,m(XF,m − 1)− 4N(N + 1)F (F + 1)

(2N − 1)(2N + 3)

〉
(60)

for m = G−N and XF,m of (53), assuming I ≥ 1. The
brackets apply to the remaining dependence on N .

The molecular phase-shift parameters are

(φµνp)qh =
3(ψp)qhQ

8I(2I − 1)[I]

〈
2Y +

µ,ν − [I]Y −µ,ν
(2N − 1)(2N + 3)

〉
(61)

for the quantities Y ±µ,ν of (55), using a pressure- and
isotope-independent parameter

(ψp)qh = e 〈q0(R) τp〉/~ (62)

(units of rad Torr/Barn). For reference, the leading-order
term in a 1/〈N〉 expansion is

(φµνp)qh ≈
3(ψp)qhQ

8I(2I − 1)[I]

[
ν2(2I + 3)− µ2(2I − 1)

]
.

(63)
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This term modifies the shape of the nonlinear shift.
Walker and Happer [5] provide an estimate for the

strength of this interaction for 85Rb with 131Xe. Not-
ing that the coefficient Ca(R) = eq0(R)Q/{4I(2I − 1)}
in Eq. (31) of [5], Fig. 14 of [5] estimates |Ca(R)| ≤
|γ(R)/20| for R ∈ [2, 3.5] Å, which is just before the
potential well in V (R) [15]. Assuming this inequality
holds generally for larger R, then it gives a rough esti-
mate of |(ψp)qh| ≤ |(ψp)sr|4I(2I − 1)/(20〈N〉Q) ≈ 0.5
rad Torr/Barn for Rb in Xe using values in Table II.

5. Zeeman interaction (Z)

The Zeeman interaction in H0 and has both nuclear
and electronic spin contributions. For simplicity, as in
previous work, let us ignore the nuclear contribution.
Then the Zeeman interaction is very nearly

HZ = −µ ·B ≈ gSµB B · S. (64)

This interaction sets the atomic and molecular quanti-
zation axes to be along the applied field B in the lab
frame, so is diagonal in mG. However, it is not diagonal
in G, and for sufficiently large fields B, will induce mix-
ing between low-field eigenstates with different values of
G.

The molecular energies follow Eqs. (11.91–92) in
Brown and Carrington [11]. For the electronic spin only,
the energies are

EZ
|FNGg〉 = (−1)F−agSµBB

(
2g

[G]

)
×
(

[G]

2

)
G(G+ 1) + F (F + 1)−N(N + 1)

2G(G+ 1)
.

(65)

The molecular phase-shift parameters are

(φαβµν p)Z ≈
gSµBBτp

[I]~

[
− α− β + cos(θ)

(
µ+ ν

+
4I(I + 1) + 1− 2µ2 − 2ν2

4〈N〉

)]
, (66)

using (35) and (28) and including only the first and sec-
ond terms in a 1/N expansion. The first term is equiva-
lent to −(r1φp)(α + β) in the low-field limit of previous
work [2]. The second term is a small correction with a
form that roughly resembles the dipolar and quadrupolar
energies above.

H. Fitting functions

To analyze data, we fit a data set of α–β transition fre-
quencies f = f(p) measured at different buffer-gas pres-
sures p using a fit function

f = ν0 + (sb + sm) p+ ∆2ν (67)

TABLE I. Atomic parameters for reference. The values of
are calculated from values of µI = gIIµN in [36]. Note that
the ratio Q(87Rb)/Q(85Rb) for free atoms and for molecules
like RbCl and RbF differ on the order of one percent [37].

Atom I gI [36] Q (Barns) [37]

85Rb 5/2 0.541192 0.276± 0.001
87Rb 3/2 1.83421 0.1335± 0.0005

TABLE II. Molecular parameters for reference from mea-
surements by Bouchiat et al. [12, 13]. The values of (ψp)sr
are calculated from the effective spin-rotation magnetic field
B1 = 〈γN〉/(gSµB) as (ψp)sr = gSµBB1〈τ〉p/~. The values
of 〈N〉 are rough theoretical estimates.

Parameter RbAr [13] RbKr [12] RbXe [12]

〈Tp2〉 (ms Torr2) 16.1 ± 1.3 10.6 ± 0.5 4.29 ± 0.23

〈τp2〉 (ns Torr) 48.5 ± 1.9 56.9 ± 1.7 34–61

(ψp)sr (rad Torr) 1.016 ± 0.040 9.61 ± 0.40 31.9 ± 9.2

B1 (Gauss) 1.19 ± 0.05 9.59 ± 0.28 38.1 ± 1.6

〈N〉 30.5–33.3 41.5 63.2–76.7

with a zero-pressure intercept ν0, a binary pressure-shift
slope sb, a molecular pressure-shift slope sm, and a non-
linear pressure shift ∆ν. The nonlinear shift ∆2ν is more
convenient here than ∆ν because of its ease of plotting.

The two slopes may be combined into a total linear
slope s = sb + sb. However, it is convenient to use sepa-
rate slopes to compare isotopes. Note that the expected
isotopic scaling of the binary slope is sb ∝ A[I] [2].

In practice, it’s convenient to decouple the parame-
ters as follows: Fit the parameter (ψp)n/

√
〈Tp2〉 instead

of (ψp)n for n = hfs, sr, dh, and qh (this helps decou-
ple the shape of ∆2ν from its size); Fit the parameter
(ψp)n/(〈N〉〈Tp2〉) instead of 〈N〉 (this helps with sm
while fitting different isotopes with shared parameters);
Last, ignore the hfs contribution to sm when initially
comparing isotopes (this helps decouple sm and ∆2ν).

In experiments, care is needed to remove nonlinear-
ity in pressure measurements, to account for inaccuracy
between pressure gauges when comparing slopes, and to
constrain the zero-pressure intercept [2].

Tables I and II provide atomic and molecular parame-
ters for reference.

1. Fit function for moderate applied fields

With the above averages and approximations, and for
moderate applied field strengths B such that G is still
a good quantum number, the nonlinear pressure shift
is given by (39) with molecular phase-shift parameters
given in (41), (44), (48), (54), (61), and (66).

Re-arranging to use these pressure-independent pa-
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rameters, the equivalent linear, limiting slope is

sm =

(
1

4π〈Tp2〉

)∑
µ,ν

∫ 1

−1
fαβµ ν (θ)[φαβµν (θ)p] d cos(θ),

(68)

and the equivalent nonlinear shift is

∆2ν =

(
−1

4π〈Tp2〉

)∑
µ,ν

∫ 1

−1

fαβµ ν (θ)[φαβµν (θ)p]3p

p2 + [φαβµν (θ)p]2
d cos(θ).

(69)

For convenience, here and subsequently, the bar notation
is removed in fit functions. The pressure-independent
parameter 〈Tp2〉 describes the formation of molecules.

2. Fit function for negligible applied fields

For magnetic fields that are small enough to not influ-
ence the nonlinear shift significantly while still defining
the quantization axis, we may set B = 0 such that the
phase shifts φαβµ,ν do not depend on θ, then (69) becomes

∆2ν ≈ ∆2
2ν = −

(
1

2π〈Tp2〉

)∑
µ,ν

Wαβ
µν (φαβµν p)

3p

p2 + (φαβµν p)2
(70)

with a subscript introduced for reference later. The cor-
responding molecular linear, limiting slope (68) becomes

sm =

(
1

2π〈Tp2〉

)∑
µ,ν

Wαβ
µν (φαβµ νp). (71)

The negligible-field weight coefficients

Wαβ
µν =

1

2

∫ 1

−1
fαβµν (θ) d cos θ (72)

generalize the Wσ =
∑
µW

00
µ,σ−µ in previous work [2].

The threshold to enter this negligible-field regime de-
pends on the choice of transition and the fit parameter
values. Numerically, for the 0–0 transition, this regime
seems to occur for B . B1 for the spin-rotation fields
B1 in Table II. However, the thresholds for some other
transitions such as end-state resonances seems to lower.

3. 0–0 transition weights and linear shift

For the 0–0 transition, the weights (72) are

Wµν = (−1)µ+ν
∑
k

1

[k]
Ck0a0;a,0C

k0
aµ;a,−µC

k0
b0;b,0C

k0
b,ν;b,−ν .

(73)

where the superscripts α and β are omitted for conve-
nience. Table III gives explicit weights of interest.

TABLE III. Weights (73) for the 0–0 transition with neg-
ligible magnetic field versus nuclear spin quantum number.
Common alkali-metal atoms are indicated for convenience.
The rows correspond to µ ∈ [a, a− 1, . . . , 1− a,−a], and the
columns to ν ∈ [b, b− 1, . . . , 1− b,−b]:

I Wµν

1/2

1

1

1

 /3

3/2
(
87Rb

)


9 3 9

6 9 6

5 11 5

6 9 6

9 3 9

 /105

5/2
(
85Rb

)


50 20 25 20 50

30 45 15 45 30

24 36 45 36 24

23 29 61 29 23

24 36 45 36 24

30 45 15 45 30

50 20 25 20 50


/1155

7/2
(
133Cs

)



245 105 105 91 105 105 245

140 210 84 133 84 210 140

110 150 204 73 204 150 110

100 120 180 201 180 120 100

97 117 141 291 141 117 97

100 120 180 201 180 120 100

110 150 204 73 204 150 110

140 210 84 133 84 210 140

245 105 105 91 105 105 245


/9009

The molecular linear slope (71) evaluates to

sm =
[I]

2π〈Tp2〉

(
gI(ψp)hfs

2
− (ψp)sr

6〈N〉

− (ψp)dh[1 + 2I(I + 1)]

5(2N − 1)(2N + 3)

+
(ψp)qh[3− 4I(I + 1)]

20I(2I − 1)(2N − 1)(2N + 3)

)
(74)

for I ∈ {1/2, 3/2, 5/2, 7/2} with the weights shown in
Table III. Note that the quadrupolar interaction is not
allowed for I = 1/2. The first term from the hyperfine-
shift interaction shares an isotopic scaling with sb ∝ [I]A,
so is indistinguishable from sb except for how parame-
ters are fitted via ∆2ν. The second term from the spin-
rotation interaction has a different isotopic scaling than
sb, so might be directly distinguishable by comparing iso-
topes. The remaining contributions from the dipolar and
quadrupolar interactions are of second and higher order
in 1/〈N〉 and also have different isotopic scalings.
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I. Relation to fit functions in previous work

Previous published work considered only the 0–0 tran-
sition with negligible applied fields [4, 28]. We can re-
cover the “low-field spin-rotation” model of [4] from (70)
by setting (ψp)dh = 0, (ψp)qh = 0, and 〈N〉 −→ ∞. Us-
ing the relation

∑
µWµ,σ−µ = Wσ, where σ = µ+ν, this

recovers the nonlinear shift

∆2
2 → ∆2

1 = −
(

1

2πT

) 2I∑
σ=−2I

Wσ(1 + r1σ)3φ3

1 + (1 + r1σ)2φ2
(75)

from [2, 4], where φ = δA[I]τ/(2~) and r1 =
2γN/(δA[I]2). We can recover the model of [28] by
additionally setting (ψp)sr = 0. Using the property

∑
µνWµν = 1, this recovers the nonlinear shift

∆2
2 → ∆2

0 = −
(

1

2πT

)
φ3

1 + φ2
, (76)

of [2, 28]. For both of the above models, this also re-
covers the corresponding molecular linear slope sm =
(φp)hfs/[2π(Tp2)] of all previous work [2].

Previous unpublished work in [2] attempts to capture
the effects of moderate applied fields using a bound-atom
approach. We recover very nearly the same model by set-
ting (ψp)dh = 0, (ψp)qh = 0, and 〈N〉 −→ ∞. However,
the details and interpretation of the angular average in
(69) are rather different than that of Eq. (4.98) in [2],
except in the limit of small applied fields.

ACKNOWLEDGMENTS

I am grateful to James Camparo for helpful and stim-
ulating discussions [38].

[1] B. H. McGuyer, Isotope study of the nonlinear pressure
shifts of 85Rb and 87Rb hyperfine resonances in Ar, Kr,
and Xe buffer gases, Journal of Chemical Physics 158,
144304 (2023).

[2] B. H. McGuyer, Atomic physics with vapor-cell clocks,
Ph.D. thesis, Princeton University (2012).

[3] B. McGuyer, (Dataset) Measured hyperfine frequencies
of 85Rb and 87Rb in inert buffer gases (2020), Harvard
Dataverse, doi:10.7910/DVN/ZA2Z7Q.

[4] B. H. McGuyer, T. Xia, Y.-Y. Jau, and W. Happer, Hy-
perfine frequencies of 87Rb and 133Cs atoms in Xe gas,
Physical Review A 84, 030501(R) (2011).

[5] T. G. Walker and W. Happer, Spin-exchange optical
pumping of noble-gas nuclei, Reviews of Modern Physics
69, 629 (1997).

[6] B. H. McGuyer, Resolving spin interactions in Rb–noble–
gas molecules via the hyperfine frequencies of 85Rb and
87Rb in Ar, Kr, or Xe gas (2016), private note.

[7] B. H. McGuyer, Pressure shifts from van der Waals
molecules including dipolar and quadrupolar hyperfine
interactions (2019), private note.

[8] B. H. McGuyer, Nonlinear pressure shifts of 85Rb and
87Rb hyperfine transitions in inert buffer gases: Theory
with molecular spin-wavefunction approach (2020), pri-
vate note.

[9] W. Happer, Y.-Y. Jau, and T. G. Walker, Optically
Pumped Atoms (Wiley VCH, Weinheim, 2010).

[10] In theory, a mixture of buffer gases could be adjusted to
null the binary shift, leaving only a molecular shift [2].

[11] J. M. Brown and A. Carrington, Rotational Spectroscopy
of Diatomic Molecules (Cambridge University Press,
Cambridge, 2003) Note that this reference swaps the def-
initions of F and G compared to their use here.

[12] M. A. Bouchiat, J. Brossel, and L. C. Pottier, Evidence
for Rb-rare-gas molecules from the relaxation of polarized
Rb atoms in a rare gas. Experimental results, Journal of

Chemical Physics 56, 3703 (1972).
[13] M. A. Bouchiat, J. Brossel, P. Mora, and L. Pottier,

Properties of rubidium-argon Van der Waals molecules
from the relaxation of polarized Rb atoms, Journal de
Physique 36, 1075 (1975).

[14] D. A. Varshalovich, A. N. Moskalev, and V. K. Kher-
sonskii, Quantum Theory of Angular Momentum (World
Scientific, Singapore, 1988).

[15] A. A. Medvedev, V. V. Meshkov, A. V. Stolyarov, and
M. C. Heaven, Ab initio interatomic potentials and trans-
port properties of alkali metal (M = Rb and Cs)–rare
gas (Rg = He, Ne, Ar, Kr, and Xe) media, Phys. Chem.
Chem. Phys. 20, 25974 (2018).

[16] S. H. Patil, Adiabatic potentials for alkali intert-gas sys-
tems in the ground-state, Journal of Chemical Physics
94, 8089 (1991).

[17] J. Pascale and J. Vandeplanque, Excited molecular terms
of the alkali-rare gas atom pairs, Journal of Chemical
Physics 60, 2278 (1974).

[18] U. Buck and H. Pauly, Interferenzen bei atomaren
stoßprozessen und ihre interpretation durch ein modi-
fiziertes Lennard-Jones-potential, Zeitschrift für Physik
208, 390 (1968).

[19] B. H. McGuyer, Hyperfine-frequency shifts of alkali-
metal atoms during long-range collisions, Phys. Rev. A
87, 054702 (2013).

[20] A. S. Tarakanova, A. A. Buchachenko, and D. S.
Bezrukov, Trapping sites of Li atom in the rare gas crys-
tals Ar, Kr, and Xe: Analysis of stability and manifesta-
tion in the EPR spectra, Low Temperature Physics 46,
165 (2020).

[21] T. V. Tscherbul, P. Zhang, H. R. Sadeghpour, and
A. Dalgarno, Collision-induced spin exchange of alkali-
metal atoms with 3He: An ab initio study, Physical Re-
view A 79, 062707 (2009).

[22] J. Camparo, The rubidium atomic clock and basic re-

https://doi.org/10.1063/5.0145919
https://doi.org/10.1063/5.0145919
https://dataspace.princeton.edu/handle/88435/dsp01ng451h53d
https://doi.org/10.7910/DVN/ZA2Z7Q
https://doi.org/10.7910/DVN/ZA2Z7Q
https://doi.org/10.1103/PhysRevA.84.030501
https://doi.org/10.1103/RevModPhys.69.629
https://doi.org/10.1103/RevModPhys.69.629
https://doi.org/10.1063/1.1677750
https://doi.org/10.1063/1.1677750
https://doi.org/10.1051/jphys:0197500360110107500
https://doi.org/10.1051/jphys:0197500360110107500
https://doi.org/10.1039/C8CP04397C
https://doi.org/10.1039/C8CP04397C
https://doi.org/10.1063/1.460091
https://doi.org/10.1063/1.460091
https://doi.org/10.1063/1.1681360
https://doi.org/10.1063/1.1681360
https://doi.org/10.1007/BF01382701
https://doi.org/10.1007/BF01382701
https://doi.org/10.1103/PhysRevA.87.054702
https://doi.org/10.1103/PhysRevA.87.054702
https://doi.org/10.1063/10.0000535
https://doi.org/10.1063/10.0000535
https://doi.org/10.1103/PhysRevA.79.062707
https://doi.org/10.1103/PhysRevA.79.062707


10

search, Physics Today 60, 33 (2007).
[23] P. J. Oreto, Y.-Y. Jau, A. B. Post, N. N. Kuzma, and

W. Happer, Buffer-gas induced shift and broadening of
hyperfine resonances in alkali-metal vapors, Physical Re-
view A 69, 042716 (2004).

[24] B. K. Rao, D. Ikenberry, and T. P. Das, Hyperfine pres-
sure shift and van der Waals interaction. IV. Hydrogen-
rare-gas systems, Physical Review A 2, 1411 (1970).

[25] S. Ray, Molecular theory of hyperfine pressure shifts in
H caused by Ar and He buffers, Physical Review A 12,
2031 (1975).

[26] R. R. Freeman, E. M. Mattison, D. E. Pritchard, and
D. Kleppner, Alkali-metal hyperfine shift in the van der
Waals molecule KAr, Physical Review Letters 33, 397
(1974).

[27] R. R. Freeman, D. E. Pritchard, and D. Kleppner, Argon-
induced hyperfine frequency shift in potassium, Physical
Review A 13, 907 (1976).

[28] F. Gong, Y.-Y. Jau, and W. Happer, Nonlinear pressure
shifts of alkali-metal atoms in inert gases, Physical Re-
view Letters 100, 233002 (2008).

[29] E. Arimondo, M. Inguscio, and P. Violino, Experimental
determinations of the hyperfine structure in the alkali
atoms, Reviews of Modern Physics 49, 31 (1977).

[30] J. R. Persson, Table of hyperfine anomaly in atomic sys-
tems, At. Data Nucl. Data Tables 99, 62 (2013).

[31] Z. Wu, T. G. Walker, and W. Happer, Spin-rotation in-
teraction of noble-gas alkali-metal atom pairs, Physical
Review Letters 54, 1921 (1985).

[32] W. E. Cooke and R. R. Freeman, Molecular-beam
magnetic-resonance measurement of the spin-rotational
interaction in RbKr, Physical Review A 16, 2211 (1977).

[33] R. R. Freeman, E. M. Mattison, D. E. Pritchard, and
D. Kleppner, The spin-rotation interaction in the van
der Waals molecule KAr, Journal of Chemical Physics
64, 1194 (1976).
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