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TL;DR: A derivation of how traveling-wave tube amplifiers work that also explores

what would happen if they used a beam of neutral particles with electric- or magnetic-

dipole moments instead of electrons.

Traveling-wave tube amplifiers (TWTAs) use the interaction between an electron beam

and a waveguide to amplify signals in the guide.1–3 They’re an enduring device from the

fascinating history of vacuum tubes.4 The classic example sends the beam down the center

of a wire-helix guide (or single-layer solenoid), while others use cavities or delay lines. Im-

portantly, the guide slows the signal so that it co-propagates with the beam at nearly the

same velocity, enabling their interaction to transfer some of the beam’s energy to the signal.

What would happen if you modified a TWTA to use a different beam or interaction? This

note considers replacing the electrons with neutral particles that have permanent electric- or

magnetic-dipole moments, such as certain atoms or molecules. It begins with an introductory

treatment of a TWTA that connects its amplification with negative-resistance self-oscillation

in RLC circuits. It then extends the treatment to electric- and magnetic-dipole interactions.

A similar concept was explored before with magnetic bubbles in orthoferrite.5
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I. SETUP

Let’s proceed similar to the traditional “Pierce” linear, small-signal analysis of a TWTA

that considers a one-dimensional, non-relativistic beam of non-interacting particles coupled

to an ideal transmission line as the waveguide. To begin, let’s setup a shared treatment

of the line, its dispersion relation, the particle beam, and the beam’s evolution via the

continuity equation. Then, in the following sections, let’s finish each particular case by

evaluating the particular forward (guide to beam) and backward (beam to guide) couplings.

Together, we’ll see that this closing of a loop—the forward coupling, beam evolution, and

backward coupling—returns an ideal line but with modified parameters for each allowed

propagation mode of the coupled beam-and-guide system. Solving the resulting dispersion

relation determines these modes and their dynamics, that is, signal amplification, beam

bunching, and beam slowing.

A. Waveguide

To model the waveguide, let’s use an ideal rlgc transmission line with voltage V (x, t) and

current I(x, t) modeled by Telegraphers’ equations,

∂V

∂x
= −

(
r + l

∂

∂t

)
I(x, t) + vs(x, t) (1)

∂I

∂x
= −

(
g + c

∂

∂t

)
V (x, t) + is(x, t), (2)

where r, l, g, and c are distributed series resistance, series inductance, shunt conductance,

and shunt capacitance. To model coupling with a beam, these equations include a distributed

voltage source vs(x, t) and a distributed current source is(x, t), which have units of voltage

or current per length. By convention, positive current I(x, t) flows towards increasing x (or

along x̂) in the guide.

Typically, the conductance is negligible (g ≈ 0), so that a constant voltage offset V0 has

little effect. Likewise, adding a constant current offset I0 (e.g., to provide a magnetic field

to assist the beam) has little effect, apart from introducing a linear voltage gradient ∝ I0x.

Thus, let’s ignore constant offsets going forward.

To proceed, let’s consider harmonic traveling waves on the line of the form

V (x, t) = V1 exp(γx− iωt) and I(x, t) = I1 exp(γx− iωt), (3)

with angular frequency ω and a so-called propagation constant γ = α + iβ that has real-

valued attenuation α and phase β (or wave number k) parts. These waves are the natural

solution if we ignore sources and offsets, but we’ll also recover them after treating the

sources below. Before we continue, note that the above expressions are typical complex-

valued phasors, which we can use because the Telegraphers’ equations are linear. However,

it’ll be important below to remember that the actual distributions are the real parts of these

and other complex functions.
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B. Dispersion relation

While examining each case below, we’ll find that the source terms can be rewritten as

distributed impedance and admittance relations of the forms

vs(x, t) = z{vs}(ω, γ)I(x, t) and is(x, t) = y{is}(ω, γ)V (x, t). (4)

Using these and the phasor forms (3) with the Telegraphers’ equations gives a dispersion

relation for the propagation constant:

γ2 =
(
r − iωl − z{vs}

) (
g − iωc− y{is}

)
= (r′ − iωl′)(g′ − iωc′). (5)

The last expression shows that the net effect of the source terms is to effectively modify the

rlgc line parameters for each solution of γ, by substituting r −→ r′ = r+δr, l −→ l′ = l+δl,

g −→ g′ = g + δg, and c −→ c′ = c+ δc, where δg − iω δc = −z{vs} and δr − iω δl = −y{is}.

As a result, despite having source terms, the line still carries harmonic traveling waves.

The change is that the line now only carries these waves for each allowed solution of γ. These

allowed waves are independent and superpose linearly, given our many approximations to

come. They represent the coupled modes of the line-and-beam system, capturing how the

beam affects the traveling waves in the line.

These waves have a propagation constant γ = ±
√

(r′ − iωl′)(g′ − iωc′), where the choice

of sign determines the wave direction. Again using the Telegraphers’ equations, their char-

acteristic impedance Z0 = V1/I1 = (iωl′−r′)/γ = γ/(iωc′−g′) =
√
(iωl′ − r′)/(iωc′ − g′) ≈√

l′/c′. For weak total attenuation (|r′/l′ + g′/c′| ≪ 1), (r′ − iωl′)(g′ − iωc′) ≈ −ω2l′c′[1 +

i(r′/l′ + g′/c′)/ω], so the real and imaginary parts of γ are α ≈ −(r′/l′ + g′/c′)β/(2ω)

and β ≈ ±|ω|
√
l′c′. The phase velocity ω/β ≈ sgn(ωβ)/

√
l′c′, so the waves travel towards

sgn(ωβ)x̂. The waves then grow along this direction if sgn(αβω) = −sgn(r′/l′+g′/c′) > 0. In

this way, signal amplification results from negative attenuation in the modified line, similar

to negative resistance in an RLC circuit.

Going back to the dispersion relation, if we approximate a lossless line (r ≈ g ≈ 0), or

equivalently, assume that the guide-beam interaction dominates attenuation (or gain), then

γ2 ≈
(
iωl + z{vs}

) (
iωc+ y{is}

)
= −ω2lc+ iω

(
ly{is} + cz{vs}

)
+ y{is}z{vs}. (6)

In the cases to follow, there’ll be only one source term at a time, simplifying this further.

C. Particle beam

Let’s assume we have a nonrelativistic beam of identical particles of mass M within a

uniform, rotationally symmetric cross section of area A propagating towards positive x. To

model this beam, let’s use a speed distribution u(x, t) and particle number density n(x, t).6

Again, let’s allow these functions to be complex, but note that the beam actually follows their

real parts. For example, these give a beam particle flux J(x, t) = ARe[n(x, t)] Re[u(x, t)]

towards +x̂.
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To evaluate these equations, let’s consider only a finite region about x = 0 within which

the changes in speed and density are small compared to their initial values of

u0 = u(0, t) and n0 = n(0, t), (7)

which are constant in time, real valued, and positive. Within this region, let’s introduce two

new functions, u1(x, t) and n1(x, t), to model these small changes:

u(x, t) = u0 + u1(x, t) with |u1(x, t)| ≪ |u0|, and (8)

n(x, t) = n0 + n1(x, t) with |n1(x, t)| ≪ |n0|. (9)

Note that these functions are zero at least at the initial position (and also for the pre-

interaction region, x ≤ 0): u1(0, t) = n1(0, t) = 0. To proceed below, let’s evaluate every-

thing to first order in these new functions. For example, the flux J(x, t) ≈ A(u0Re[n1(x, t)]+

n0Re[u1(x, t)]).

Note that the total derivative for beam quantities is

d

dt
=

∂

∂t
+

(
∂x

∂t

)
∂

∂x
=

∂

∂t
+ u(x, t)

∂

∂x
, (10)

because of the chain rule, which is important enough in fields like continuum mechanics to

go by many different names (e.g., advective or material derivative).a This total derivative

is absolutely critical to modeling the beam since it’s composed of moving particles.6 To

evaluate forward couplings, we’ll need the total derivative of the speed, which is

du

dt
=

∂u1

∂t
+ u(x, t)

∂u1

∂x
≈ ∂u1

∂t
+ u0

∂u1

∂x
, (11)

where the final step dropped a term that was second order in u1.

D. Continuity equation

For real-valued functions, particle conservation gives a local continuity equation (or trans-

port equation) for the beam evolution:

∂n

∂t
+

∂(nu)

∂x
= 0 (assumes real-valued functions). (12)

However, this equation is nonlinear, so to accept complex-valued functions, it must be

replaced with one that uses the real parts of the speed and density, such as

∂

∂t

(n+ n̄)

2
+

∂

∂x

(n+ n̄)(u+ ū)

4
= 0 (allows complex-valued functions), (13)

where a bar denotes complex conjugation. Evaluating either to first order gives

∂n1

∂t
+ u0

∂n1

∂x
+ n0

∂u1

∂x
≈ 0 (first-order approximation of both). (14)

a https://en.wikipedia.org/wiki/Material_derivative

https://en.wikipedia.org/wiki/Material_derivative
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This equation will let us close a feedback loop between the forward and backward couplings

treated below, because it gives a first-order equation for n1:

∂n1

∂t
+ u0

∂n1

∂x
≈ −n0

∂u1

∂x
≈ −n0γ u1(x, t). (15)

Here, anticipating upcoming results, the last step assumes a similar phasor form as (3).

This differential equation evolves the beam, and we’ll encounter similar equations for u1

below. All of them share the form ∂f
∂t

+ A∂f
∂x

= BeCx+Dt, which has a general solution of

f(x, t) = BeCx+Dt/(D+AC)+E provided D+AC ̸= 0, where capital letters are real-valued

coefficients. Thus, the solution here is

n1(x, t) ≈ −
(

n0γ

u0γ − iω

)
u1(x, t), (16)

which assumes either α = Re[γ] ̸= 0 (the type of solution of interest) or β = Im[γ] ̸= ω/u0

(phase velocity mismatch) to keep the denominator finite.

II. CLASSIC ELECTRIC-MONOPOLE TWTA (E0 INTERACTION)

In this section, let’s finish the derivation of the classic TWTA for a beam of electrons.2–4

The following sections then extend this analysis to neutral particles with dipole moments.

In each case, the task is to evaluate the forward and backward couplings. Together with

the continuity equation, as treated above, this leads to a dispersion relation to solve for the

allowed values of γ.

A classic TWTA uses the electric-monopole (E0) interaction between the guide and an

electron beam. The forward coupling is the Lorentz force of each electron’s charge Q with

the guide’s electric field E. The beam is placed so that this electric field is very nearly axial,

such as near the center of a helix guide, and this forward coupling gives

M
du

dt
≈ Qx̂ · E(x, t) ≈ QEx(x, t) ≈ −Q

∂V

∂x
≈ −Qγ V (x, t), (17)

where the electron charge Q < 0. The final step assumed the form of (3), and assumed a

negligible contribution from any other source of voltage gradients, such as a current offset

I0. Using (11), this gives an approximate, first-order differential equation for u1(x, t):

∂u1(x, t)

∂t
+ u0

∂u1(x, t)

∂x
≈ −

(
γQ

M

)
V (x, t). (18)

This has the same form as the differential equation in (15) for n1(x, t), and its solution is

u1(x, t) ≈ −
(

γQ/M

u0γ − iω

)
[V (x, t)− V (0, t)], (19)

which again requires either α = Re[γ] ̸= 0 or β = Im[γ] ̸= ω to keep the denominator finite.
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The backward coupling comes from the induced image charge from the beam. Noting

that the beam current is Ib(x, t) = QJ(x, t) = QRe[n] Re[u], this coupling is approximately

Re[is(x, t)] ≈ −∂Ib
∂x

= −AQ
∂ Re[n] Re[u]

∂x
= AQ

∂ Re[n]

∂t
, (20)

where the last step comes from the continuity equation (12). This is a special case of the

Shockley-Ramo theorem approximating complete, local induction. Switching to phasors and

using the solution (16), the backward coupling is an admittance relation,

is(x, t) = y{is}(ω, γ)V (x, t) ≈ −
(
ωn0AQ

2

M

)(
iγ2

(u0γ − iω)2

)
V (x, t), (21)

where the parenthesis separate real and complex coefficients.

A. Pierce dispersion relations and solutions

Using this with (6) gives a dispersion relation for a lossless line:

γ2 ≈ −ω2lc− iωl

(
n0AQ

2ω

M

)(
iγ2

(u0γ − iω)2

)
= −ω2lc+

(
ln0AQ

2ω2

M

)(
γ

u0γ − iω

)2

.

(22)

Interestingly, that sign of Q doesn’t matter. Introducing an uncoupled propagation constant

for the line,

γg = iβg = iω
√
lc = iω/ugγg, (23)

and an uncoupled propagation constant for the beam,

γb = iβb = iω/u0, (24)

then (22) is equivalent to the so-called Pierce 4-wave dispersion relation2–4(
γ2 − γ2

g

)
(γ − γb)

2 + 2γbγgγ
2C3 ≈ 0, (25)

where the dimensionless Pierce gain parameter C is given by

C3 ≡ Z0

4|Vb/Ib(0, t)|
≈ −

(
ln0AQ

2ω2

2Mu2
0γgγb

)
≥ 0. (26)

The above approximate equality comes from using the characteristic impedance Z0 ≈
√

l/c,

the initial beam current |Ib(0, t)| = |Q|J(0, t) = |Q|An0u0 > 0, and the initial beam voltage

|Vb| = Mu2
0/(2|Q|) > 0. Rough values for C in practice are between 0.01 and 0.10.4 (For

example, Ib(0, t) ≈ 10 mA, Vb ≈ 1.5 kV, and Z0 ≈ 150 Ohms gives C ≈ 0.063.) This Pierce

dispersion relation ignores space-charge effects,2–4 which are important for electron beams,

and is often given in terms of β instead of γ [in which case β is likely modified to be complex

valued: β −→ β = i(α− γ)].2,4
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Before we consider solutions, to help find “C” parameters for new dispersion relations

below, let’s rewrite (25) as a dimensionless quantity(
γ2 − γ2

g

)
(γ − γb)

2

γbγgγ2
≈ −2C3 =

(
Z0

2

) ∣∣∣∣Ib(0, t)Vb

∣∣∣∣ = ( ω2l

2γbγgu0

)
Q2

(
J(0, t)

Mu2
0/2

)
. (27)

In the final expression, the first parenthesis gives the coupling details, then there’s the

interaction parameter (here, Q), and finally the beam dynamics (particle flux divided by the

kinetic energy per particle). The coupling details reduce via Z0 = ω2l/(γgγbu0).

The Pierce dispersion relation (25) is a quartic polynomial with four solutions for γ. It’s

well studied, so here’s how to get its solutions: Since C is a small parameter, let’s look for

the lowest-order solutions in C. To begin, if we set C −→ 0, which represents no beam-guide

coupling, then (25) reduces to (γ2 − γ2
b ) (γ − γg)

2 ≈ 0. By inspection, this has four solutions:

a pair of “forward” and “backward” solutions for the line, γ ≈ ±γg, and a duplicate pair of

forward solutions for the beam, γ ≈ γb. This makes sense, since the lossless line carries the

usual forward and backward solutions to the one-dimensional wave equation, and the non-

interacting beam can only carry forward solutions up to its two degrees of initial condition

freedom. Reintroducing a nonzero C, the typical approach is to look for synchronous (same

speed) solutions by substituting γb ≈ γg in (25), which are the main ones of interest to

TWTAs. Next, following a trick in Pierce’s book,3 we can find the three forward solutions

by substituting γ = γg(1 + Cδ) in (25) and expanding, which gives

2 + δ(2 + Cδ)(2C + δ2) ≈ 2(1 + δ3) + Cδ(4 + δ3) + . . . ≈ 2(1 + δ3) ≈ 0. (28)

The solution to δ3 = −1 are δ ∈ {−1, (1 + i
√
3)/2, (1 − i

√
3)/2}. Thus, the three forward

solutions are γ ∈ {(1 − C)γg, (1 + C/2)γg + (iC
√
3/2)γg, (1 + C/2)γg − (iC

√
3/2)γg}. In

order, there’s a constant, a decaying, and a growing (signal amplifying) forward wave. (As

an aside, reducing the dispersion relation so that it only gives these three solutions gives a

so-called Pierce 3-wave dispersion relation.2) Similarly, again borrowing from Pierce’s book,3

to get the backward solution, instead substitute γ = γg(−1+C3δ) in (25) and expand, which

gives δ ≈ 1/4 and thus γ ≈ (−1+C3/4)γg. This backwards wave is nearly untouched by the

beam (C3 is very small), which makes sense since it moves in an opposing direction from the

beam. [Another aside: There is a related traveling-wave/velocity-modulating device called

a backwards-wave oscillator (or BWO) that does use a counter-synchronous arrangement.

Some O-type BWOs strongly resemble TWTAs, but they seem to differ by using a double

helix or serpentine waveguide.] Finally, there are solutions for the non-synchronous case,

including amplifying ones, but they’re usually investigated numerically (see Appendix A).

Now that we’ve found a forward amplifying solution, let’s return to signal amplification.

With our approximations, the amplitude of phasors like (3) grows as it propagates a distance

x by the multiplicative factor G(x) = e|αx|, using α = Re[γ] of the amplifying solution. For

a classic TWTA, G(x) ≈ e|Cγgx
√
3/2| ≈ e|Cωx

√
3/(2u0)|. For a rough example, using C ≈ 0.05,

u0 ≈ 0.5vc (half the speed of light), ω ≈ 2π × 10 GHz, and an interaction length of about

10 cm gives G(10 cm) ≈ 8.
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III. MAGNETIC-DIPOLE TWTA (M1 INTERACTION)

Suppose now that we replace the electrons with a beam of neutral particles (Q → 0),

and that each of these particles has a permanent (static) magnetic-dipole moment µ. Let’s

constrain this moment to always be along x̂, so that µ = µ1x̂. (In practice, you could try

applying a large axial magnetic bias field to maintain this alignment.) Let’s assume µ1 is

constant (no torquing or state changes). To proceed, let’s model each dipole as a current

loop of radius r{µ1} and right-handed current I{µ1} so that µ1 = π(r{µ1})
2I{µ1}. Fortunately,

the exact values of r{µ1} and I{µ1} won’t matter.

In this case, there’s a magnetic-dipole (M1) interaction between the guide and the particle

beam. The forward coupling is the force on each dipole from the guide’s magnetic field

B(x, t) ≈ Bx(x, t)x̂. For simplicity, let’s approximate this field using that of an infinite

solenoid, Bx(x, t) ≈ µ0nhI(x, t), where nh is the number of turns per length of the helix

along x̂, with a sign that accounts for the winding direction of the solenoid following the

right-hand rule. This gives a force on the loop7 of

M
du

dt
= ∇ (µ ·B) ≈ µ1

∂Bx

∂x
≈ µ1µ0nh

∂I

∂x
≈ µ1µ0nhγ I(x, t). (29)

Just as above, this leads to an equation for u1 that we can solve, which gives

u1(x, t) ≈
(
µ1µ0nhγ/M

u0γ − iω

)
[I(x, t)− I(0, t)]. (30)

Using this, the solution (16) to the continuity equation then gives n1.

The backward coupling comes from variation in the magnetic flux that the beam induces

in the guide. For our current loop model, this coupling occurs via a mutual inductance

M between each loop and the solenoid. Taking advantage of reciprocity, let’s calculate

this inductance via the flux captured by each loop per unit current from the solenoid,

which gives the magnitude M = πr2{µ1}Bx(x, t)/I(x, t) = πr2{µ1}µ0nh. Finally, we need the

total effective loop current that accounts for all particles at a given position x, which is

I{Σµ1}(x, t) = J(x, t)I{µ1} = J(x, t)µ1/
(
πr2{µ1}

)
as a real-valued quantity. Using these, the

induced electromotive force (EMF) in the guide at x is −M (∂/∂t) I{Σµ1}(x, t). (Before we

continue, let’s double check this sign: Lenz’s law says that the induced EMF should create

an opposing magnetic flux. Here, if I{Σµ1}(x, t) increases locally at x, then for positive nh,

we need Bx(x, t) and thus I(x, t) to decrease. Looking at the first of the Telegraphers’

equations, this would occur if vs(x, t) decreases. Fingers crossed on this.) All together, the

distributed voltage source is

Re[vs(x, t)] ≈ −M
∂2I{Σµ1}

∂x∂t
= −

(
Mµ1A

πr2{µ1}

)
∂2Re[n] Re[u]

∂x∂t
= µ1µ0nhA

∂2Re[n]

∂t2
. (31)

Taking care while converting to a phasor gives the impedance relation

vs(x, t) = z{vs}(ω, γ)I(x, t) ≈ µ1µ0nhA
∂2n1

∂t2
=

(
(ωµ1µ0nh)

2n0A

M

)(
γ

u0γ − iω

)2

I(x, t).

(32)

Interestingly, the sign of µ1 doesn’t matter, just like for Q above.
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A. Dispersion relation and solutions

Using this with (6) gives a dispersion relation for a lossless line:

γ2 ≈ −ω2lc+ iωc

(
(ωµ1µ0nh)

2n0A

M

)(
γ

u0γ − iω

)2

. (33)

Amazingly, this has the same form as the classic TWTA relation of (25),(
γ2 − γ2

g

)
(γ − γb)

2 + 2γbγgγ
2C3

M1 ≈ 0, (34)

just with a new “C” parameter. Here, and subsequently, let’s use the subscripts “M1”

and “E0” to differentiate between parameters for the magnetic-dipole and classic cases.

Rewriting this as a dimensionless quantity gives(
γ2 − γ2

g

)
(γ − γb)

2

γbγgγ2
≈ −2C3

M1 =
iωcn0A(µ1µ0nhω)

2

Mu2
0γbγg

=

(
iωc(µ0nhω)

2

2γbγgu0

)
µ2
1

(
J(0, t)

Mu2
0/2

)
.

(35)

Using iωc = γg/Z0 and ω2 = −γbu0, the first coefficient simplifies to

iωc(µ0nhω)
2

2γbγgu0

= −(µ0nh)
2

2Z0

, (36)

which gives an M1 gain parameter of

C3
M1 =

(
(µ0nh)

2

4Z0

)
µ2
1

(
J(0, t)

Mu2
0/2

)
≥ 0. (37)

(Hopefully I didn’t goof the sign. Appendix A provides some support.) Amazingly, this

parameter is the same as the classic TWTA parameter,

CM1 = CE0(Q −→ Q{µ1} = µ1µ0nh/Z0), (38)

if the electron charge is substituted with an effective magnetic-dipole charge as shown. This

allows an artificial comparison of this M1 case with the E0 case (see below).

For a quick order-of-magnitude estimate of the new Pierce gain parameter CM1, let’s

consider a thermal beam of something like cesium atoms. Rough values are µ1 ≈ µB

(the Bohr magneton), M ≈ 133 amu, u0 ≈ 245 m/s, J(0, t) ≈ 1010/s, nh ≈ 1/mm, and

Z0 ≈ 150 Ohms. Together this gives C3
M1 ≈ −3.4× 10−25 and thus CM1 ≈ −7× 10−9, which

is about seven orders of magnitude smaller than the classic TWTA case. In terms of effective

classic TWTA parameters, noting µ0µB/(|Qe| Ohm) ≈ 7.3× 10−8, where Qe is the electron

charge, gives Q{M1}/|Qe| ≈ 10−9, which in turn gives an effective electron-beam voltage and

current of 85 MV and 10−18 A. In short, the equivalent electron-beam impedance is huge,

drastically shrinking the Pierce gain parameter.

This case also has the same form of solutions as the classic TWTA, so signal amplification

has the same form: GM1(x) ≈ e|CM1ωx
√
3/(2u0)|. For a rough example, using CM1 ≈ −7×10−9,

u0 ≈ 245 m/s (or about 0.8 ppm of the speed of light), ω ≈ 2π×10 GHz, and an interaction

length of about 1 m gives GM1(1 m) ≈ 6. Remarkably, we see that the severe reduction in

the Pierce gain parameter is counteracted by the drastic reduction in speed. Note also that

nothing about these parameters have been optimized, so finding any gain at all is fascinating.
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IV. ELECTRIC-DIPOLE TWTA (E1 INTERACTION)

Now suppose that the neutral particles each have a permanent (static) electric-dipole

moment p, instead of a magnetic moment (µ1 → 0). To simplify things, let’s again constrain

this moment to always be along x̂, so that p = p1x̂ with p1 constant. (I’m not sure this is

practical, because this alignment is likely to change.) To proceed, let’s model each dipole as

coming from a pair of displaced charges: a charge +q1 advanced in position by +d1/2 along

x̂, and a charge −q1 delayed by −d1/2. This gives p1 = q1d1, following typical convention.

Fortunately, the exact values of q1 and d1 won’t matter.

In this case, there’s an electric-dipole (E1) interaction between the guide and the particle

beam. The forward coupling is the force on each dipole from the guide’s electric field E(x, t).

Picking up where we left off with the classic TWTA, this is

M
du

dt
= (p · ∇)E ≈ p1

∂Ex

∂x
≈ −p1

∂2V

∂x2
= −p1γ

2V (x, t). (39)

As above, this leads to an equation for u1 that we can solve, which gives

u1(x, t) ≈ −
(

p1γ
2/M

u0γ − iω

)
[V (x, t)− V (0, t)]. (40)

Using this, the solution (16) to the continuity equation then gives n1.

The backward coupling still comes from the induced image charge of the beam, just as

in the classic case. However, there are now two charges for each particle using our model.

Let’s consider the case of a vanishing separation d1. Then, adapting (21) gives

Re[is(x, t)] ≈ lim
d1→0

Aq1
∂

∂t
[Re[n(x+ d1/2, t)]− Re[n(x− d1/2, t)]] = Ap1

∂2Re[n]

∂x∂t
(41)

Here, the limit became a derivative since q1 = p1/d1. This gives the admittance relation

is(x, t) = y{is}(ω, γ)V (x, t) ≈ −
(
p21n0ωA

M

)(
iγ4

(u0γ − iω)2

)
V (x, t). (42)

Interestingly, the sign of p1 doesn’t matter, just like for Q and µ1 above.

A. Dispersion relation and solutions

Using this with (6) gives a dispersion relation for a lossless line:

γ2 ≈ −ω2lc− iωl

(
p21n0ωA

M

)(
iγ4

(u0γ − iω)2

)
= −ω2lc+

(
l(p1ω)

2An0

M

)(
γ2

u0γ − iω

)2

.

(43)

This has almost, but not quite the same form as the previous E0 and M1 cases. This leads

to a modified TWTA dispersion relation of the form(
γ2 − γ2

g

)
(γ − γb)

2 + 2γ4C3
E1 ≈ 0. (44)
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Here, and subsequently, let’s use the subscript “E1” to differentiate the new “C” parameter

from the previous E0 and M1 cases. Note that the coupling term in this new dispersion

relation has a different power of γ (quartic, not quadratic). Amazingly, repeating the same

process to find synchronous solutions recovers the same solutions as the classic case!

Rewriting this as a dimensionless quantity gives(
γ2 − γ2

g

)
(γ − γb)

2

γ4
≈ −2C3

E1 =
l(p1ω)

2An0

Mu2
0

=

(
lω2

2u0

)
p21

(
J(0, t)

Mu2
0/2

)
. (45)

which gives an E1 gain parameter of

C3
E1 = −

(
lω2

4u0

)
p21

(
J(0, t)

Mu2
0/2

)
=

(
Z0γgγb

4

)
p21

(
J(0, t)

Mu2
0/2

)
= −

(
Z0ω

2

4u0ug

)
p21

(
J(0, t)

Mu2
0/2

)
≤ 0.

(46)

As before, this parameter recovers the classic TWTA parameter with a sign change,

CE1 = −CE0

(
Q −→ QE1 = |p1|

√
|γgγb| ≈ |p1ω/u0|

)
, (47)

and a substitution of an artificial electric-dipole charge as shown.

For a quick order-of-magnitude estimate of the new parameter CE1, let’s consider a su-

personic beam of fluoromethane (CH3F, or Freon 41) following Ref. 8. Rough values are

p1 ≈ 0.6 D (1 debye ≈ 0.021|Qe| nm), M ≈ 44 amu, u0 ≈ 165 m/s, J(0, t) ≈ 109/s,

ω ≈ 2π × 100 MHz, and Z0 ≈ 150 Ohms. Together this gives C3
E1 ≈ −2.2 × 10−15 and

thus CE1 ≈ −1.3 × 10−5, which has a magnitude not too far from the classic TWTA case.

In terms of effective classic TWTA parameters, Q{E1}/|Qe| ≈ 47 ppm, which in turn gives

an effective electron-beam voltage and current of 0.13 µV and 0.0076 pA. Note that these

values assumes the synchronous condition (γb ≈ γg).

This case again has the same form of solutions as the classic TWTA, and the sign change

in the Pierce parameter switches which mode is amplifying vs decaying. In the end, signal

amplification has the same form: GE1(x) ≈ e|CE1ωx
√
3/(2u0)|. For a rough example, using

CE1 ≈ −13 ppm, u0 ≈ 165 m/s (or about 0.6 ppm of the speed of light), ω ≈ 2π×100 MHz,

and an interaction length of about 10 cm gives GE1(10 cm) ≈ 72. It’s surprising that this

predicts such a large gain, even with ω reduced significantly in the above calculations. I

suspect such gain is unfeasible because of the assumption of aligned moments, and worry

that I may have goofed something in calculating it.

V. DISCUSSION

I started this Note originally to learn how TWTAs work, and later expanded it to look

for connections with atomic physics and with magnetic braking (see Appendix A). I did this

because, while the components of a TWTA seem straightforward, how they work together to

amplify wasn’t obvious (at least not to me). The approach used here for the classic TWTA

is very close to the original Pierce treatment, and as expected, it does expose a mechanism
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behind this amplification in the small-signal regime. However, it doesn’t fully explain it.

More in-depth treatments show that TWTAs are actually beam decelerators at heart, in

that they amplify by converting some of the kinetic energy of their electron beam into signal

energy, thus slowing that electron beam. It’d be interesting to see if the approach used here

could be slightly extended to track this energy flow, to perhaps explore saturation, and to

show how the ponderomotive force contributes.

Beam decelerators are important to atomic physics because they’re commonly used in

experiments and devices to slow beams made of other particles like ions,b paramagnetic

atoms, and polar molecules. These particles primarily have E0, M1, and E1 interactions,

respectively. I was curious to see if TWTA-style coupling and amplification was possible for

the dipolar interactions (M1 & E1), which are outside the classic E0 case, and the crude

treatments given above suggest the answer’s a yes. Additionally, helical and cavity TWTAs

resemble the Zeeman slowers and Stark decelerators commonly used in these applications,

so there’s an intriguing similarity of their implementations. Therefore, there’s an interesting

connection with atomic physics.

One obstacle, however, is that the typical beams of interest to atomic physics are so

drastically slow that there aren’t any obvious candidates for waveguides that could be syn-

chronous with them. While there are techniques in atomic physics to make sufficiently slow,

synchronous traveling waves (e.g., traveling-wave Stark and Zeeman decelerators), they seem

to only create moving potential wells, instead of guiding coherent signals. That is, they only

use the forward coupling, and more-or-less abandon the backward coupling. Perhaps there’s

a way to modify such techniques appropriately? Or, maybe there could be a path forward

with metamaterials, extreme delay/serpentine guides, or “slow/stopped light” techniques?

In the meantime, the non-synchronous, slow-beam regime is still worth exploring. Ap-

pendix A summarizes solutions for this regime, and shows that amplification still occurs

for some cases. This regime also seems to have a connection with magnetic braking that

is discussed there. Perhaps there could also be interesting opportunities with “stationary

beams” (e.g., trapped samples or vapor cells) and their excitations?

In all, these connections seem worth exploring further, in case there might be some

beneficial cross pollination. I can imagine some very tentative directions to pursue. For

example, perhaps this could lead to novel decelerators, control techniques via the forward

coupling, probe techniques via the backward coupling, or even specialty amplifiers, say

for low-power applications or for the inverse case of amplifying beam properties. It’d be

interesting to see how things change after including the quantum mechanical properties of

the particles, whether there are opportunities (or concerns) with induced moments, and

to explore backwards-wave-oscillator style variations (e.g., bifilar helix). I’m particularly

curious about whether there are opportunities with atomic clocks, for example, with alkali-

metal atoms that have ground-state M1 hyperfine transitions. Could you use a guide to

make some sort of traveling-wave maser clock? And do non-resonant TWTA-style guides

offer a practical way to avoid the line pulling of typical resonant cavities in clocks? Last,

but not least, it’d be interesting to explore a connection with free-electron lasers.

b We didn’t explicitly treat ions before, but they follow the E0 case. Here’s a rough estimate: M ≈ 100

amu, u0 ≈ 245 m/s, and J(0, t) ≈ 1010/s, gives Cion ≈ 2× 10−7, not too far from the previous M1 case.
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Appendix A: Slow-beam solutions and magnetic braking

Consider a particle beam slow enough that ub/u0 = γg/γb = ϵ ≪ 1. For example, a ub ≈
100 m/s beam vs a “slow” ug ≈ vc/3 guide gives ϵ ≈ 10−6. The above derivations still apply

in this slow-beam regime, but we need to find non-synchronous solutions to the dispersion

relations. Proceeding similarly as before, the leading-order approximate solutions for the E0

and M1 cases, which follow the dispersion relation (25), are γ ∈ {γb(1 + i
√
2ϵ C3/2), γb(1 −

i
√
2ϵ C3/2), γg(1−ϵC3), γg(−1+ϵC3)}. Similarly, for the E1 case, which follows the dispersion

relation (44), the leading-order approximate solutions are γ ∈ {γb(1 + i
√
2C3/2), γb(1 −

i
√
2C3/2), γg(1 − ϵ2C3), γg(−1 + ϵ2C3)}. In both cases, there’s a beam mode with non-

negligible gain (and thus beam deceleration) if C > 0, but not if C < 0.

Naively, I would expect beam deceleration for the M1 case in this slow-beam regime,

because of its strong resemblance with a magnetic brake.c In particular, notice the similarity

with a common classroom demonstration of deceleration of a magnet falling within a metal

pipe (e.g., Ref. 9). They’re similar in that the falling magnet can be treated as a falling

particle with an aligned dipole, and the forward and backward couplings are similar (i.e., the

falling particle induces circumferential eddy currents in the pipe). However, they’re rather

different in that we require an oscillatory current in the guide, and when non-oscillatory, our

circumferential currents don’t actually complete a circuit, no matter how large the winding

density |nh|. Also, we treat an initially uniform beam, not a particle, so the backward

coupling is a bit different (i.e., the particle case induces EMF with a dispersive shape about

the particle location that washes out for a beam, unless the beam becomes nonuniform, say,

via so-called velocity modulation/bunching into packets). Note that shorting both ends of

a finite solenoid together wouldn’t help, except as the magnet enters and exits the solenoid,

because of the symmetry of the EMF shape for constant velocity, which sums to zero.

Nevertheless, it’s fun to compute the expected braking of an individual particle for the

M1 case. To do this, let’s use Ref. 9. The axial magnetic field at a distance z from a current

loop is Bz ≈ µ0r
2
{µ1}I{µ1}/(2z

3) = µ0µ1/(2πz
3). Comparing this with Eq. (1) in Ref. 9 gives

that the moment µ1 = Bz(2πz
3)/µ0 = πMrd

3/6 in terms of their magnetized sphere model

with diameter d and remanent magnetization Mr. Using this, the magnetic-drag coefficient

of their Eq. (14) becomes cm = (45π2/64)(µ0µ1)
2ΩW/D4, for a pipe with conductivity Ω,

wall thickness W , and diameter D. Using their Eq. (13), the initial braking deceleration is

then a = Fz/M ≈ cmu0/M . Numerically, for a copper pipe with σ ≈ 4.8 × 107/(Ω m) and

D ≈ W ≈ 1 cm, and for a particle with µ1 ≈ µb, M ≈ 133 amu, and u0 ≈ 245 m/s, this

gives a ≈ 5× 10−31 m/s2. That’s truly tiny! (If this had actually been significant, someone

probably would’ve noticed it, since it’d impact Zeeman slowers.) To get an appreciable

effect, say on the same order as typical gravity, you’d have to shrink the pipe diameter

down to about 0.1 nm, or atom size. This seems to make sense, since cm ∝ (d/D)6 for the

magnetized-sphere model, so D ≈ d maximizes the braking force.

Potential future work could explore the connection between models of magnetic braking

of a falling magnet within a metal pipe and of the M1 TWTA case. Perhaps there’s a way to

c Magnetic brakes are also known as eddy current, induction, Faraday, or electric brakes. For more, see:

https://en.wikipedia.org/wiki/Eddy_current_brake

https://en.wikipedia.org/wiki/Eddy_current_brake
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induce non-negligible braking of a falling magnet within a solenoid by exciting a decelerating

mode with a signal generator? That could make an interesting experiment or demo, since

the signal generator could provide a level of parametric control absent in typical classroom

magnetic-braking experiments.
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