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TL;DR: Handy notation that helps keep track of multiple coordinate systems when
working with vectors and matrices in three dimensions, and some references.

This Note shares a nonstandard notation that I found helpful while analyzing the angular
errors of mechanical and optical systems in 3D for aerospace applications. There’s not much
to it. .. The notation uses square brackets, subscripts, and arrows to explicitly keep track of
coordinate systems (or frames of reference) and the transformations between them, which
helps minimize silly errors when using multiple frames.
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I. NOTATION
A. Getting started

Let’s assume all coordinate systems are right handed. Let’s use bold to indicate both
vectors and matrices, and reserve a font (here, LaTeX’s mathcal) to label coordinate systems.
For vectors, let’s use capital letters in general, but reserve lower-case letters for unit vectors
and hats for basis vectors. For matrices, let’s also use capital letters in general, but reserve
R for rotations and other transformations.

To proceed, consider a 3D vector V, a 3 x 3 matrix M, a Cartesian coordinate system P
with basis unit vectors {Xp, yp, Zp }, and another system Q with basis vectors {Xo,¥o,Zo}-
Let I denote the 3 x 3 identity matrix.
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B. Vector components

For any vector V, let [V]p denote a column array of its components in the system P,

V.-xp
[V]'p:(V')A(p,V-S/'p,V'ip)T: Vyp ) (1)

V.-zp
where T" denotes transpose. Using this, [V]g then denotes a column vector of the components
of V in Q. An optional shorthand for the entries of these columns is n{P}, where n €

{z,y, z}. To use numerical values for indices like n, let {1,2,3} = {x,y, z}.

C. Matrix components
Similarly, for any matrix M, let [M]p denote a 3 x 3 array of the components of M in P,
Miz" My M
Mp = | M7 M P |, (2)
M M ME?

where the shorthand M)} = x5 My

D. Equation components

Together, the above notation can convert back and forth between an abstract matrix
equation and a specific numerical equation by applying brackets as follows:

U=MV+—>[U=MV]p
> [Ulp = [MV]p = [M]p [V]5

s Mi" Miyh MEZH (VP
— | U = | M T P v (3)
Uit M v M) AV

where U is another vector. Note that all components here share the same frame P.

E. Change of basis for vectors and matrices

Let Ro.p denote a 3 x 3 array that converts the components of a vector V in P to its
components in 9, via

[Vlg = Roep [V]p. (4)



This array describes a “passive” (or change-of-basis) transformation that keeps vectors fixed
but changes coordinate systems, and is given by dot products (or directional cosines) between
all of the basis vectors of both systems as follows:

[}A{Q]g >A{Q ’ }AC'PJ >A{Q ’ y'PJ >A{Q ’ 273
Rocp = | [yolp | = (Xplo, Frlo, [2rle) = | Yo %P, Yo ¥p, Yo 2p |- (5)
Zo]p Zg - Xp, Zg-Xp, Zg - Zp

Successive change-of-basis arrays combine as

Rp. oRocr = Rpir (6)

when neighboring frames match (in above, Q), where R is another frame. In this arrow
notation, an inverse (or transpose) is equivalent to swapping frame symbols:

Ry p =Rop =Rp o (7)

Using this, the conversion of the components of a matrix M in P to those in Q is given by
the similarity transformation

M]g = Roep [M]p Rpeo. (8)

Note that this notation lacks the brackets introduced above to give components in a
frame. This visual styling is for two reasons: (1°%) I found that this helps remind that these
arrays are different from other matrices and don’t transform following (8). (2°¢) In practice,
these arrays are often imperfect estimates with important errors, so it can be convenient to
reserve brackets to indicate a true (error free) change of basis as follows. Note that we can
extend (3) to show that these change-of-basis arrays are mixed-basis components of I:

V=1V« [Vlp=[Iz[V]p = [Ilpcp[V]p = [llpcg[Vlo=Tpr [VIr=... (9)

Thus, when Rp, g is free of error, this gives Rp. o = [I]p. g (or Ip._g for short). Otherwise,
when instead Ro.p ~ [IJgcp, it can be convenient to keep these quantities separate by
using [I]p. g for the true change of basis and Rg. p for an estimate of it. In this case, some
care’s needed to track which quantities were used with (8) and (6). Finally, if preferable, an
optional alternative to arrows is to label left and right systems via pRg and p[M]g, such
that »[M]p = [M]p.

Il. REFERENCE
A. Basic rotations
The following matrices describe “active” rotations that move vectors while keeping the

coordinate system fixed, where the shorthand “c” = cos(f) and “s6” = sin(f):

10 0 cd 0 sb cd —s8 0
Ri0)=[0c0 —s0], Ry@) = 0 1 0], and R,(O)= s 0 0]. (10)
0 s cb —s6 0 cf 0 0 1



These rotate vectors by the angle 6 following the right-hand rule about the axis indicated
in their subscript. Note that R,(—6) = Ru(0)T and Ry (61)Ra(62) = Ru(01 + 62).

To use one of these basic rotations in an “active” sense, you must pick a coordinate system.
For example, setting [M]p = R (0) gives a matrix M that describes a right-hand rotation by
0 about Xp. That is, the vector M 'V is rotated that way compared to V. Similarly, products
of these rotations can construct “passive” rotations, such as Rp. g = R,(03)Ry(62)Rx(61),
using Euler or Tait-Bryan angle parametrizations.

B. Axis-angle rotation

Let Ra(w, [n]) denote the axis-angle rotation matrix

ni NpTy Nyl 0 —-n, ny
Ra(w, n]) = cos(w)I 4 [1 — cos(w)] | neny n; nyn. | +sin(w) [ n. 0 —n, |,
NgNy NyN, ng —Ny Ny 0

(11)

which describes an “active” right-handed rotation by the angle w about the unit vector n
with explicit components [n] = (n,, n,,n,)” in an unspecified frame. Again, to use this, you
must pick a coordinate system. For example, setting [M]p = Ra(w, [m]p) gives a matrix M
that describes a right-hand rotation by w about a unit vector m and sets the components
(ngyny,n,)" = [mlp in (11).

C. First-order angular error matrix

The following handy matrix introduces small angular offsets

1 =5, 4,
Movolp = | 6. 1 =6, | & Ry(6:) Ry(5,) Ry(6.) for [5,] < 1. (12)
—5, 0 1

that can simulate attitude or transformation errors, depending on where it’s inserted in some
analysis. Note that the order of the R,(6,) on the right-hand side doesn’t matter.

D. Comparing rotations (angular distance and axis of misalignment)

Consider two rotation matrices Ry and Ry and a unit vector x. One way to compare
these matrices is to compute their so-called angular distance, or the largest possible angle
between R; x and Ry x for any x:

wmax - wmax<R17 RZ) = € [07 7T]7 (13)

arccos {% [Tr (RT R,) — 1] }




which is zero if Ry = Ry. Note that trace is invariant to (8), so it can be calculated in any
preferred frame. This angle follows from noting (R; x) - (R2x) = x - (R Ry x) and using
Ra(Ymax, ]p) = [RT Ry]p, which also gives the corresponding axis for this angle as

(557 - i), 87 — 520, S — s8)
]p = (14)
2 8in(Ymax) ’

where S = RT R, and the shorthand S;,{E;D} =x5LSy,.
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