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TL;DR: Handy notation that helps keep track of multiple coordinate systems when

working with vectors and matrices in three dimensions, and some references.

This Note shares a nonstandard notation that I found helpful while analyzing the angular

errors of mechanical and optical systems in 3D for aerospace applications. There’s not much

to it. . . The notation uses square brackets, subscripts, and arrows to explicitly keep track of

coordinate systems (or frames of reference) and the transformations between them, which

helps minimize silly errors when using multiple frames.
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I. NOTATION

A. Getting started

Let’s assume all coordinate systems are right handed. Let’s use bold to indicate both

vectors and matrices, and reserve a font (here, LaTeX’s mathcal) to label coordinate systems.

For vectors, let’s use capital letters in general, but reserve lower-case letters for unit vectors

and hats for basis vectors. For matrices, let’s also use capital letters in general, but reserve

R for rotations and other transformations.

To proceed, consider a 3D vector V, a 3× 3 matrix M, a Cartesian coordinate system P
with basis unit vectors {x̂P , ŷP , ẑP}, and another system Q with basis vectors {x̂Q, ŷQ, ẑQ}.
Let I denote the 3× 3 identity matrix.
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B. Vector components

For any vector V, let [V]P denote a column array of its components in the system P ,

[V]P = (V · x̂P ,V · ŷP ,V · ẑP)T =

V · x̂P
V · ŷP
V · ẑP

 , (1)

where T denotes transpose. Using this, [V]Q then denotes a column vector of the components

of V in Q. An optional shorthand for the entries of these columns is V
{P}
n , where n ∈

{x, y, z}. To use numerical values for indices like n, let {1, 2, 3} ≡ {x, y, z}.

C. Matrix components

Similarly, for any matrix M, let [M]P denote a 3× 3 array of the components of M in P ,

[M]P =

M
{P}
xx M

{P}
xy M

{P}
xz

M
{P}
yx M

{P}
yy M

{P}
yz

M
{P}
zx M

{P}
zy M

{P}
zz

 , (2)

where the shorthand M
{P}
xy = x̂T

PMŷP .

D. Equation components

Together, the above notation can convert back and forth between an abstract matrix

equation and a specific numerical equation by applying brackets as follows:

U = MV←→ [U = MV]P

←→ [U]P = [MV]P = [M]P [V]P

←→

U
{P}
x

U
{P}
y

U
{P}
z

 =

M
{P}
xx M

{P}
xy M

{P}
xz

M
{P}
yx M

{P}
yy M

{P}
yz

M
{P}
zx M

{P}
zy M

{P}
zz


V

{P}
x

V
{P}
y

V
{P}
z

 , (3)

where U is another vector. Note that all components here share the same frame P .

E. Change of basis for vectors and matrices

Let RQ←P denote a 3 × 3 array that converts the components of a vector V in P to its

components in Q, via

[V]Q = RQ←P [V]P . (4)
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This array describes a “passive” (or change-of-basis) transformation that keeps vectors fixed

but changes coordinate systems, and is given by dot products (or directional cosines) between

all of the basis vectors of both systems as follows:

RQ←P =

[x̂Q]
T
P

[ŷQ]
T
P

[ẑQ]
T
P

 =
(
[x̂P ]Q, [ŷP ]Q, [ẑP ]Q

)
=

x̂Q · x̂P , x̂Q · ŷP , x̂Q · ẑP
ŷQ · x̂P , ŷQ · ŷP , ŷQ · ẑP
ẑQ · x̂P , ẑQ · x̂P , ẑQ · ẑP

 . (5)

Successive change-of-basis arrays combine as

RP←QRQ←R = RP←R (6)

when neighboring frames match (in above, Q), where R is another frame. In this arrow

notation, an inverse (or transpose) is equivalent to swapping frame symbols:

R−1Q←P = RT
Q←P = RP←Q. (7)

Using this, the conversion of the components of a matrix M in P to those in Q is given by

the similarity transformation

[M]Q = RQ←P [M]P RP←Q. (8)

Note that this notation lacks the brackets introduced above to give components in a

frame. This visual styling is for two reasons: (1st) I found that this helps remind that these

arrays are different from other matrices and don’t transform following (8). (2nd) In practice,

these arrays are often imperfect estimates with important errors, so it can be convenient to

reserve brackets to indicate a true (error free) change of basis as follows. Note that we can

extend (3) to show that these change-of-basis arrays are mixed-basis components of I:

V = IV←→ [V]P = [I]P [V]P = [I]P←P [V]P = [I]P←Q [V]Q = [I]P←R [V]R = . . . (9)

Thus, whenRP←Q is free of error, this givesRP←Q = [I]P←Q (or IP←Q for short). Otherwise,

when instead RQ←P ≈ [I]Q←P , it can be convenient to keep these quantities separate by

using [I]P←Q for the true change of basis and RQ←P for an estimate of it. In this case, some

care’s needed to track which quantities were used with (8) and (6). Finally, if preferable, an

optional alternative to arrows is to label left and right systems via PRQ and P [M]Q, such

that P [M]P = [M]P .

II. REFERENCE

A. Basic rotations

The following matrices describe “active” rotations that move vectors while keeping the

coordinate system fixed, where the shorthand “cθ” = cos(θ) and “sθ” = sin(θ):

Rx(θ) =

1 0 0

0 cθ −sθ
0 sθ cθ

 , Ry(θ) =

 cθ 0 sθ

0 1 0

−sθ 0 cθ

 , and Rz(θ) =

cθ −sθ 0

sθ cθ 0

0 0 1

 . (10)
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These rotate vectors by the angle θ following the right-hand rule about the axis indicated

in their subscript. Note that Rn(−θ) = Rn(θ)
T and Rn(θ1)Rn(θ2) = Rn(θ1 + θ2).

To use one of these basic rotations in an “active” sense, you must pick a coordinate system.

For example, setting [M]P = Rx(θ) gives a matrixM that describes a right-hand rotation by

θ about x̂P . That is, the vectorMV is rotated that way compared toV. Similarly, products

of these rotations can construct “passive” rotations, such as RP←Q = Rz(θ3)Ry(θ2)Rx(θ1),

using Euler or Tait-Bryan angle parametrizations.

B. Axis-angle rotation

Let Ra(ω, [n]) denote the axis-angle rotation matrix

Ra(ω, [n]) = cos(ω)I+ [1− cos(ω)]

 n2
x nxny nxnz

nxny n2
y nynz

nxnz nynz n2
z

+ sin(ω)

 0 −nz ny

nz 0 −nx

−ny nx 0

 ,

(11)

which describes an “active” right-handed rotation by the angle ω about the unit vector n

with explicit components [n] ≡ (nx, ny, nz)
T in an unspecified frame. Again, to use this, you

must pick a coordinate system. For example, setting [M]P = Ra(ω, [m]P) gives a matrix M

that describes a right-hand rotation by ω about a unit vector m and sets the components

(nx, ny, nz)
T = [m]P in (11).

C. First-order angular error matrix

The following handy matrix introduces small angular offsets

[Merror]P =

 1 −δz δy
δz 1 −δx
−δy δx 1

 ≈ Rx(δx)Ry(δy)Rz(δz) for |δn| ≪ 1. (12)

that can simulate attitude or transformation errors, depending on where it’s inserted in some

analysis. Note that the order of the Rn(θn) on the right-hand side doesn’t matter.

D. Comparing rotations (angular distance and axis of misalignment)

Consider two rotation matrices R1 and R2 and a unit vector x. One way to compare

these matrices is to compute their so-called angular distance, or the largest possible angle

between R1 x and R2 x for any x:

ψmax = ψmax(R1,R2) =

∣∣∣∣arccos{1

2

[
Tr

(
RT

1 R2

)
− 1

]}∣∣∣∣ ∈ [0, π], (13)
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which is zero if R1 = R2. Note that trace is invariant to (8), so it can be calculated in any

preferred frame. This angle follows from noting (R1 x) · (R2 x) = x ·
(
RT

1 R2 x
)
and using

Ra(ψmax, [n]P) = [RT
1 R2]P , which also gives the corresponding axis for this angle as

[n]P =

(
S
{P}
zy − S{P}yz , S

{P}
xz − S{P}zx , S

{P}
yx − S{P}xy

)
2 sin(ψmax)

, (14)

where S = RT
1 R2 and the shorthand S

{P}
xy = x̂T

P S ŷP .
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