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Abstract

Inductors, transmission lines, and Tesla transformers have been modeled with

lumped-element equivalent circuits for over a century. In a well-known paper from

1904, Paul Drude predicts that the mutual inductance for an unloaded Tesla

transformer should be nonreciprocal. This historical curiosity is mostly forgotten

today, perhaps because it appears incorrect. However, Drude’s prediction is shown

to be correct for the conditions treated, demonstrating the importance of constraints

in deriving equivalent circuits for distributed systems. The predicted nonreciprocity

is not fundamental, but instead is an artifact of the misrepresentation of energy by

an equivalent circuit. The application to modern equivalent circuits is discussed.

Introduction

The German physicist Paul Drude (1863–1906) contributed significantly to many

fields of science during the late 19th and early 20th centuries [1]. In particular, he

remains well known for pioneering work in optics and solid-state physics. Less

familiar is that late in life Drude published a series of articles [2–5] on the physics

of Tesla transformers (or Tesla coils), which at the time were important for early

radio communication [6, 7]. While these articles are mainly of historical interest

today, the article from 1904 is still cited as a primary reference for the

conventional equivalent circuit of a Tesla transformer (e.g., [8–10]).

Such equivalent circuits (or lumped-element models) are ubiquitous in the

study of physical systems, from acoustic resonators [11] to coupled qubits [12].

Importantly, these circuits are widely used to model not only lumped systems that

are small compared to the wavelengths of interest, but also distributed systems like

Tesla transformers that may not be. This has long been a standard practice in

radio and microwave engineering, especially with resonant transmission lines,

microwave networks, and inductors [7, 13–15]. Most systems modeled by circuits
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satisfy some form of reciprocity, or broadly, symmetry under the exchange of

source and response [16]. For these reciprocal systems, a common assumption

today is that their equivalent circuits must also be reciprocal.

However, there is a startling prediction in Drude’s 1904 article [4]: Drude

predicts that the mutual inductance for a Tesla transformer should be nonreciprocal

(i.e., M12=M21). Though nearly forgotten, this prediction seems to have been well

known in the early 20th century [17]. Today, it has every appearance of being a

mistake. After all, there are no clear sources of nonreciprocity in a Tesla

transformer, such as magnetic materials, so how could this prediction possibly be

correct? Despite its appearance, we will see that Drude’s prediction is indeed true,

although for an unexpected reason.

This Article explains the physics behind Drude’s overlooked prediction. To

proceed, we will not focus on Drude’s original derivation of an equivalent circuit

for a Tesla transformer. This is because the original unfortunately contains errors

and a distracting treatment of inductance. It also neglects to explain the

phenomenon behind the prediction. For the interested reader, an English

translation and discussion of the original derivation in German has been provided

in Ref. 18. Instead, this Article presents a modern treatment of the phenomenon

behind Drude’s prediction. We will see how reciprocal systems, paradoxically,

may have nonreciprocal equivalent circuits in rare applications. Besides historical

interest, this phenomenon highlights the boundary between lumped and

distributed systems and, in particular, the potential for confusion when modeling

the latter with the former.

Drude’s Prediction

To illustrate Drude’s prediction, consider the following specific example of an air-

core transformer sketched in Fig. 1(a), which could be part of a Tesla transformer.

A standard equivalent circuit is sketched in Fig. 1(b) that is valid for direct current

(dc) and low-frequency alternating current (ac), assuming the transformer is

much smaller than the shortest ac wavelength. For an ideal lumped transformer

there are various ways to show that the primary and secondary inductors share the

same mutual inductance, Mps~Msp, such as reciprocity [19], symmetry [20], and

conservation of energy [21–23]. In particular, the latter requires this equality

because otherwise energy would be lost or gained during transfer between the

inductors.

However, what about at higher frequencies? Now let the secondary be a single-

layer solenoid, just as in a Tesla transformer. While real solenoids are quite

complex [24], they often act very nearly as transmission lines [14, 15, 25].

Following Drude [4], let us then model the secondary as a distributed

transmission line. As arranged the solenoid is a quarter-wave resonator. For

frequencies near the fundamental self-resonance it will have the current and

voltage spatial profiles sketched in Fig. 1(c). While these profiles suggest

otherwise, the solenoid in a Tesla transformer is typically much smaller in size
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than the corresponding free-space wavelength of the fundamental self-resonance.

This is because these solenoids are slow-wave structures [15], and near this

resonance it is the coiled winding length, which is often enhanced by a large

number of turns (e.g., *1000), that typically becomes comparable to a quarter

wavelength. Nevertheless, the standard "lumped’’ circuit in Fig. 1(b) predicts no

resonances, and is no longer valid at frequencies near or above the fundamental

self-resonance of the solenoid.

We may still derive a lumped-element model (or equivalent circuit) for the

transformer, however, by starting with a distributed-element model for the

solenoid, just as for a resonant transmission line. Doing this, we will find that for

frequencies near the fundamental self-resonance, we may model the voltages and

currents in Fig. 1(a) with the equivalent circuit sketched in Fig. 1(d). As derived

below, the mutual inductances in this circuit are no longer equal, but satisfy

M1= eM1~p=4: ð1Þ

Surprisingly, conservation of energy requires this result. While Drude’s original

derivation is incomplete, it may be corrected to give the above result as shown in

Ref. 18.

This phenomenon predicted by Drude is an artifact of modeling transmission

lines with lumped equivalent circuits. To explain it, we will treat the general case

of a uniform transmission line coupled to an external system. We will derive an

exact equivalent circuit for the specific example described above, and obtain the

simplified circuit in Fig. 1(d) by keeping only the part most important near the

fundamental self-resonance, following Drude [4]. The specific result (1) then

comes not from any fundamental nonreciprocity, but instead from the subtle

choice to model the same voltage and current as in Fig. 1(a), namely the voltage

drop across and current into a resonant inductor. It is one example of an artificial

Fig. 1. Specific example to illustrate Drude’s prediction. (a) Physical setup of primary and secondary
inductors with dc self-inductances Lp and Ls. (b) Low-frequency equivalent circuit with reciprocal mutual
inductance. (c) Voltage and current spatial profiles for the first self-resonance of the secondary solenoid. (d)
Equivalent circuit for frequencies near this resonance with nonreciprocal mutual inductance. This circuit is a
simplification of a more complete circuit derived from a distributed-element model treating the solenoid as a
transmission line, which is shown in a later figure. All parameters are defined in the text.

doi:10.1371/journal.pone.0115397.g001
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nonreciprocity originating from the misrepresentation of energy, or equivalently,

from the "lumped’’ circuit parameters retaining a distributed character. Finally,

we will extend this phenomenon to other equivalent circuits for lines, further

examine its application to solenoids and Tesla transformers, and conclude with a

discussion.

Equivalent Circuits for Transmission Lines

Consider the transmission line sketched in Fig. 2(a), and described by the four

parameters of series resistance r, series inductance l, shunt conductance g, and

shunt capacitance c, each with units distributed per length. The voltage V(x,t) and

current I(x,t) at any position x along the line then obey the Telegrapher’s

equations,

LV(x,t)
Lx

~{ rzl
L
Lt

� �
I(x,t)zvsp(x,t) ð2aÞ

LI(x,t)
Lx

~{ gzc
L
Lt

� �
V(x,t)zisp(x,t), ð2bÞ

which correspond to the distributed-element model sketched in Fig. 2(b). The

additional terms vsp(x,t) and isp(x,t) are distributed sources that model coupling

with external systems, such as the primary inductor in Fig. 1(a). By convention,

positive I(x,t) flows towards increasing x in the solenoid. Before we continue, note

that the distributed-element model sketched in Fig. 2(b) is itself a form of

equivalent circuit for a line, and that today, unlike with Paul Drude in 1904, there

are many numerical methods [26, 27] available to directly use such a model for a

line or more complicated systems.

To generate a lumped-element equivalent circuit, we first expand the voltage

and current along the line with spatial Fourier series. For the geometry of

Fig. 1(a), a convenient choice is the pair of quarter-wave Fourier series

V(x,t)~
X?
n~1

sin (knx)Vn(t) ð3aÞ

I(x,t)~
X?
n~1

cos (knx)In(t): ð3bÞ

For a line of length H, this series is complete in the interior (0,H) of the line,

and the wavenumbers kn~(2n{1)p=(2H)~p=(2H),3p=(2H),5p=(2H), etc.

Next, we introduce a set of lumped circuit parameters Rn,Ln,Gn, and Cn for each

spatial mode n from the corresponding distributed parameters r,l,g, and c, by

using the series and shunt scaling lengths
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An~Rn=r~Ln=l and Bn~Gn=g~Cn=c: ð4Þ

Any equivalent circuit must preserve the natural resonant frequencies vn 5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k2

nzrg)=(lc)
p

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1zRnGn)=(LnCn)

p
of its modes n, so these scaling lengths

must satisfy

AnBn~1=k2
n: ð5Þ

The lumped parameters Rn,Ln,Gn, and Cn for the mode n are then determined if

we specify the ratio

xn~
ffiffiffiffiffiffiffiffiffiffiffiffi
An=Bn

p
, ð6Þ

which controls how the circuit represents impedance. From this ratio, An~xn=kn

and Bn~1=(xnkn). For a given line, there is no unique choice of xn or the resulting

parameters Rn,Ln,Gn, and Cn. Without loss of generality, however, we can choose

the ratio

xn~1,which sets eRn,eLn,eGn, and eCn: ð7Þ

Here and subsequently, a tilde marks this choice. How to transform to the case

of xn=1 is described below.

Finally, using Eqs. (3–7), the Telegrapher’s equations (2) separate to a system of

equations for the Fourier amplitudes Vn(t) and In(t) of each spatial mode n,

Vn(t)~{ eRnzeLn
d
dt

� �
In(t)z

1
wn

� �
Vsp,n(t) ð8aÞ

Fig. 2. Uniform transmission line described by the Telegrapher’s equations (2). (a) Voltage and current
conventions and relation to Fig. 1. (b) Distributed-element model equivalent to (2). The equivalent circuits in
all other figures are derived from this model.

doi:10.1371/journal.pone.0115397.g002
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In(t)~ eGnzeCn
d
dt

� �
Vn(t){

1
wn

� �
Isp,n(t): ð8bÞ

Here, the lumped sources that represent coupling with an external system are

Vsp,n(t)

Isp,n(t)

� �
~

ðH

0

vsp(x,t) cos (knx)

isp(x,t) sin (knx)

� �
dx, ð9Þ

which we will see below is the natural choice from conservation of energy. The

angle wn is half the electrical length knH of the line for the spatial mode n,

wn~knH=2: ð10Þ

For the expansion (3), wn~p=4,3p=4,5p=4, etc.

Together, the set of circuits defined by the system (8), which are sketched in

Fig. 3(a), comprise an exact equivalent circuit for the line. Fourier series different

than (3) produce similar results, though the nonresonant (dc) terms in some are

special cases with An or Bn~0. Importantly, note that these separate circuits may

stitch together to form one combined circuit depending on the relationship of the

sources Vsp,n(t) and Isp,n(t) between the modes n.

Misrepresentation of energy

Before treating coupling in detail, we can explain the nonreciprocity (1) as

follows. First, note that the energy stored by the mode n along the line is

Un~
1
2

ðH

0
l cos (knx)2In(t)2zc sin (knx)2Vn(t)2� �

dx

~
1
2

LUhIn(t)2iz 1
2

CUhVn(t)
2i

ð11Þ

for real-valued Vn(t) and In(t). Here, the brackets denote a time average, and the

effective parameters are given by LU=l~CU=c~H=2. In contrast, the energy

modeled by the equivalent circuit (8) is not that of (11), but instead

U ’n~
1
2
eLnhIn(t)

2iz 1
2
eCnhVn(t)

2i~ 1
wn

� �
Un: ð12Þ

Therefore, the equivalent circuit (8) misrepresents the energy stored (and

power dissipated) along the line by a factor of 1=wn=1. That is, the equivalent

circuit (8) models the energy stored per wn radians along the line. An additional

lengthening argument for this misrepresentation is sketched in Fig. 4.

This is the origin of the nonreciprocity (1). Since the equivalent circuit for the

line misrepresents energy, its representation of coupling with an external system,

such as the primary inductor in Fig. 1, must convert any transferred energy (or
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power) to this incorrect representation. Assuming the equivalent circuit for the

external system represents energy correctly, this conversion requires a directional

amplification (or gain) to represent the coupling, which is accomplished by the

two factors of 1=wn in (8). Amplifiers are nonreciprocal circuit elements, so this

representation is nonreciprocal [16].

Distributed character of circuit parameters

Intuitively, this phenomenon results from the "lumped’’ parameters in the circuit

(8) still retaining a distributed character: note that eLn~Ls=(2wn) is an inductance

per radian just as l~Ls=H is an inductance per length, where Ls~lH is a dc self-

inductance. Thus, for a fixed wavenumber kn, the parameters eRn,eLn,eGn, and eCn are

properties of the line and independent of its length H, just like r,l,g, and c.

However, for fixed amplitudes Vn(t) and In(t), lengthening the line increases its

stored energy (11), as sketched in Fig. 4. Therefore, to conserve energy, the

equivalent circuit for the mode n must have a coupling parameter that scales with

Fig. 3. Equivalent circuits for the line and external system. (a) Lumped-element model equivalent to (8) for
the nth spatial mode. (b) Lumped-element model for a two-terminal port coupled inductively or capacitively with
the line. For direct coupling, Ips(t)~Ip(t) and Vps(t)~Vp(t). The inductance Lp is present only for the specific
example. When the line and external system are coupled, the circuits in (a) and (b) combine according to the
relationship between the lumped sources.

doi:10.1371/journal.pone.0115397.g003

Fig. 4. Lengthening argument for the misrepresentation of energy. For r~g~0 and no coupling, note that

two constraints determine eLn and eCn: (i) the resonant frequency vn~(eLn
eCn){1=2, and (ii) the impedance

Vn(t)=In(t)~(eLn=eCn)1=2. As sketched for n~1, lengthening by one or more wavelengths does not change (i) or

(ii), thus neither eLn or eCn. For fixed Vn(t) and In(t), the energy (12) modeled by the circuit in Fig. 2(a) also does
not change. However, the stored energy (11) must increase, so this circuit misrepresents energy.

doi:10.1371/journal.pone.0115397.g004
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the length of the line. For the specific example, this is the mutual inductanceeM1~M1=w1 in (1).

Transformation to other equivalent circuits

So far, we have focused on one particular equivalent circuit. This phenomenon,

however, is modified by the choice of circuit, which is not unique. The circuit (8)

is constrained to model Vn(t) and In(t), which is appropriate for the specific

example because Vs(t)<V1(t) and Is(t)<I1(t) for frequencies near the fundamental

v1. To relate this phenomenon to other equivalent circuits, consider substitutions

of the form

Vn(t)

In(t)

� �
~an

1=nn 0

0 nn

� �
V ’n(t)

I’n(t)

� �
, ð13Þ

which lead to circuits modeling the variables V ’n(t) and I’n(t). Here, the matrix

represents an ideal transformer with turns ratio nn. Using (13) with (8) shows that

this transformer replaces the parameters eRn,eLn,eGn, and eCn with those set by

xn~n2
n . Noting this and using (13) with (12) shows that only substitutions (13)

with an~1=
ffiffiffiffiffi
wn

p
may represent energy correctly. Consequently, all others lead to

circuits that have some form of the artificial nonreciprocity described above.

That is, equivalent circuits formed by constraints other than to model energy

may exhibit some form of the phenomenon outlined above. Conversely, a

reciprocal circuit that models energy may be incompatible with other desirable

constraints. As (13) shows, this is the case with the specific example, because

modeling energy is incompatible with modeling both Vs and Is together near

resonance. We will treat a more common example with solenoids after finishing

the specific example below.

Coupling with External Systems

Let us now return to model coupling. Consider an external system that is

equivalent to a two-terminal port with well-defined voltage Vp(t) and current

Ip(t), such as that sketched in Fig. 3(b), which could be part of a lumped circuit,

for example, or a point on another line. To model coupling with this system, we

must treat both the forward and reverse directions, or to and from the line,

respectively. To model many common types of coupling simultaneously, let the

distributed operators A,B,C, and D specify the forward coupling as

vsp(x,t)

isp(x,t)

� �
~
A B
C D

� �
Vp(t)

Ip(t)

� �
: ð14Þ
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For the inductive coupling of the specific example,

A~C~D~0 and B~{m(x)
L
Lt

, ð15Þ

where the function m(x) describes the coupling between the inductors, such that

Mps~Msp~
ÐH

0 m(x)dx. Likewise, the single operator C~c(x) L
Lt describes

capacitive coupling. Direct (or wired) coupling at the bottom x~0 is described by

the pair A~D~d(x), where d(x) is a Dirac d function, and at the top x~H by

A~{D~{d(x{H). A direct tap at an interior point may be treated by splitting

the line into two separate lines with direct couplings at the shared endpoint. Note

that direct couplings may modify the boundary conditions modeled by the

Fourier series (3).

We may determine the reverse coupling in terms of the coupling operators in

(14) as follows. Note that the lumped sources for the port in Fig. 3(b) are sums

over contributions from the entire line,

Vps(t)

Ips(t)

� �
~

ðH

0

vps(x,t)

ips(x,t)

� �
dx, ð16Þ

where the distributed sources vps(x,t) and ips(x,t) are distinct from vsp(x,t) and

isp(x,t) in (2). Assuming the coupling is lossless, passive, and quasistatic, the

forward and reverse powers transferred should balance at all x,

I(x,t)

V(x,t)

� �T vsp(x,t)

isp(x,t)

� �
~

Ip(t)

Vp(t)

� �T vps(x,t)

ips(x,t)

� �
, ð17Þ

where T denotes transposition. Using (14), and noting that the coupling operators

described above are symmetric for harmonic signals, this gives the reverse

coupling

vps(x,t)

ips(x,t)

� �
~
D B
C A

� �
V(x,t)

I(x,t)

� �
: ð18Þ

The off-diagonal operators, which act as a mutual impedance and admittance,

are the same as those of (14), as expected from reciprocity. Additionally, A~+D
for the couplings described above, so the relations (14) and (18) are equivalent

under the exchange of source and response, up to a diagonal sign.

Using (14), the forward lumped sources (9) for each mode n in the expansion

(3) are

Vsp,n(t)

Isp,n(t)

� �
~
An Bn

Cn Dn

� �
Vp(t)

Ip(t)

� �
, ð19Þ

where the coupling operators for the mode n are
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An Bn

Cn Dn

� �
~

ðH

0

cos (knx) 0

0 sin (knx)

� � A B
C D

� �
dx: ð20Þ

Likewise, we may write the reverse coupling (16) as a sum over lumped sources

from each mode n,

Vps(t)

Ips(t)

� �
~
X?
n~1

Vps,n(t)

Ips,n(t)

� �
: ð21Þ

Using (18) and (20), these lumped sources are

Vps,n(t)

Ips,n(t)

� �
~
Dn Bn

Cn An

� �
Vn(t)

In(t)

� �
: ð22Þ

Following (17), we may use (19) to verify that both sets of lumped sources (9)

and (22) conserve power locally,

In(t)

Vn(t)

� �T Vsp,n(x,t)

Isp,n(x,t)

� �
~

Ip(t)

Vp(t)

� �T Vps,n(x,t)

Ips,n(x,t)

� �
, ð23Þ

which justifies an earlier assertion for the form of (9). The discussion about

reciprocity following (18) also applies here. Note that An=+Dn unless both are

zero for the couplings considered above.

Together, Eqs. (19–22) specify how the equivalent circuits (8) sketched in

Fig. 3(a) couple to the external port, such as sketched in Fig. 3(b). In all cases, the

two factors of 1=wn in (8) may be modeled by a directional amplifier (or a

nonreciprocal ideal transformer). For inductive and capacitive couplings, this gain

can combine with other parameters to simplify the circuit, leading to

nonreciprocal mutual inductances or capacitances. For other equivalent circuits,

the coupling is given by using (13) with (8) and (19–22), and often involves an

ideal transformer.

Coupling for the specific example

For the specific example, the set of coupling operators (15) leads to a single

nonzero mode operator (20),

Bn~{Mn
L
Lt

, where Mn~

ðH

0
m(x) cos (knx)dx: ð24Þ

From Fig. 3(b) and (21–22), we see that Mn is the reverse mutual inductance for

the mode n. However, from Fig. 3(a), (8), and (19), we see that the forward

mutual inductance for the mode n is not Mn, but
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eMn~Mn=wn: ð25Þ

The ratio (1) follows for n~1. The analogous ratio of forward-to-reverse

mutual inductances for other equivalent circuits generated by (13) is

Msp,n=Mps,n~1=(a2
nwn): ð26Þ

The exact equivalent circuit for the specific example is sketched in Fig. 5, and is

the result of the couplings above stitching together the circuits in Fig. 3. The

circuit in Fig. 1(d) is then an approximation that ignores losses (r~g~0) and the

contributions of the modes n§2. For a spatially uniform current, I(x,t)~Is(t)
with g~c~0, one may use

P?
n~1 (knwn)

{1~H to show that the full circuit in

Fig. 5 simplifies to the dc circuit in Fig. 1(b), giving

Mps~Msp~
X?

n~1
({1)nz1 eMn:

Standard equivalent circuits for lines

The approach outlined above differs from those commonly found in textbooks to

derive similar circuits. The main difference is that to study Drude’s prediction, we

did not implicitly assume reciprocity. Nevertheless, one can recover many

standard equivalent circuits for lines and their microwave analogs [13–15] from

the above approach using substitutions (13) with an~1=
ffiffiffiffiffi
wn

p
. For convenience,

these circuits are sketched in Fig. 6 (c.f. Figure 11.12 of Ref. 15). The seemingly

unrelated topologies of these various circuits may be graphically understood by

noting that they each originate from the circuits of Fig. 3, which stitch together

differently depending on coupling with external systems. A direct bottom

coupling with nn~
ffiffiffiffiffi
wn

p
, and a direct top coupling with nn~1=

ffiffiffiffiffi
wn

p
simplify to

typical Foster-form circuits for the input impedances of short- and open-ended

lines (Fig. 6(a) and (b), respectively). (Half-wave Fourier series are more

convenient than (3) here.) Simultaneous top and bottom direct couplings

reproduce a segment of line, such as a length of coaxial cable, although this circuit

is not standard (Fig. 6(c)). One can show that this circuit reproduces a quarter-

wave impedance transformer near resonance. Additionally, inductive coupling

with nn~
ffiffiffiffiffi
wn

p
and capacitive coupling with nn~1=

ffiffiffiffiffi
wn

p
simplify to circuit forms

typical for loop- and probe-coupled microwave cavities (Fig. 6(d) and (e),

respectively) [13, 28].

Applications

While the phenomenon described above is likely a rare curiosity, it may be present

with resonant single-layer solenoids and Tesla transformers, as first predicted by

Paul Drude’s Prediction of Nonreciprocal Mutual Inductance

PLOS ONE | DOI:10.1371/journal.pone.0115397 December 26, 2014 11 / 17



Drude. However, the conventional modeling of both of these systems has changed

since 1904. To describe how this phenomenon may still apply in modern

equivalent circuits today, both of these applications are discussed in the next two

sections.

Before continuing, it is important to note that the phenomenon behind Drude’s

prediction is not essential to the modeling of coupling with external systems, or

scattering through the line when there is coupling with multiple external systems.

For example, the nonreciprocities in Fig. 5 are not required to model the input

. .
 .

Fig. 5. Exact equivalent circuit for the specific example. The coupling with the primary inductor Lp of
Fig. 3(b) stitches together the lumped-element models of Fig. 3(a) into this single circuit. The narrowband
circuit in Fig. 1(d) is an approximation of this circuit that ignores losses and the contributions of the modes
n§2, which are nonresonant for frequencies near the fundamental v1.

doi:10.1371/journal.pone.0115397.g005

Fig. 6. Transmission lines with standard equivalent circuits. These circuits are formed by external
coupling stitching together the circuits of Fig. 3, as described in the text. (a) Open-circuit line from direct
bottom coupling. (b) Closed-circuit line from direct top coupling. (c) Segment of line from direct top and bottom
couplings, such as a coaxial cable with BNC terminals. Note that this circuit is not standard, but follows from
the text. (d) Analog of loop-coupled microwave cavity from inductive coupling, or reciprocal version of Fig. 5.
(e) Analog of probe-coupled microwave cavity from capacitive coupling.

doi:10.1371/journal.pone.0115397.g006
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impedance of the primary inductor in the specific example. Instead, one may use

(13) to remove the nonreciprocities in Fig. 5 and produce Fig. 6(e), but at the cost

of modeling different voltages and currents than originally intended. Additionally,

note that the scope of the approach above is restricted to systems that behave as

uniform transmission lines. Other issues with reciprocity may arise in more

complex systems such as microwave waveguides [29, 30].

Single-layer solenoids

To account for stray capacitance, single-layer solenoids and other inductors have

been modeled with circuits similar to Fig. 1(d) for over a century [7, 31–33]. In

the early 20th century, a typical constraint was to set eL1~(2=p)Ls in these

circuits, the same as (7) in the specific example [34]. Drude, for example, derived

this constraint in an article from 1902 [2], but did not recover it in 1904 [4]

because of errors, as shown in Ref. 18. Perhaps this constraint may partly explain

why some early texts, such as Hund [32], made a greater allowance for

nonreciprocity than is customary today.

Since then, however, the standard constraint has been to use the dc self-

inductance, L1~Ls (or x1~n2
1~2w1), because this conveniently leads to an

empirical "self-capacitance’’ for a solenoid that is nearly constant over a wide

frequency range, after the effects of a capacitive load are included (e.g., following

Miller [35]) [36–38]. This constraint does not require energy to be modeled

correctly or uniquely determine the circuit, except in the low-frequency limit of a

spatially uniform current (i.e., infinite load). Thus such circuits may require

nonreciprocity as described above. For example, the substitution (13) with

n1~1=a1~
ffiffiffiffiffiffiffi
2w1

p
leads to one such circuit that models the current Is(t) near

resonance, for which the ratio (26) of mutual inductances is 1/2. In practice, note

that capacitive loads will attenuate or suppress this phenomenon, and again that

lines are only approximate models for real solenoids [24].

Tesla transformers

The conventional equivalent circuit for a Tesla transformer contains a circuit with

the same form as Fig. 1(d). Today, this circuit by default uses the dc-inductance

constraint described above, despite it not being part of Drude’s derivation in 1904

[4]. Importantly, this circuit is nearly always assumed both to be reciprocal and to

model the base current Is and output voltage Vs of the secondary solenoid before

any spark discharge [8, 9]. Were the current spatially uniform in the solenoid,

these three constraints would be compatible. Instead, the current is often

nonuniform because typically only a weak external capacitive load is present

across the solenoid. The conventional circuit is thus usually overconstrained.

Interestingly, this has been observed numerically by enthusiasts who predict

nonunique circuit parameters, but did not consider reciprocity [39].

Depending on which of the three constraints are kept, the phenomenon

described above may be present. To show what effects this may have, note that the
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traditional procedure to calculate the maximum possible output voltage follows

from conservation of energy and the assumption of a reciprocal mutual

inductance, and gives jVmaxj~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Uin=Cs

p
for an energy Uin input during

operation [40]. Here, Cs is the sum of the empirical self-capacitance for the

secondary solenoid with the capacitance of any loads, such as an output electrode.

This traditional procedure will be inaccurate for weakly loaded or unloaded

Tesla transformers, because the standard dc-inductance constraint misrepresents

energy in circuits that model Vs. Instead, the ratio of mutual inductances must be

included to give the correct result: jVmaxj~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Msp,1=Mps,1)(2Uin=Cs)

p
. For the

unloaded case, using (13) with n1~a1~
ffiffiffiffiffiffiffi
2w1

p
leads to such a circuit that models

Vs near resonance. Using (26), the ratio Msp,1=Mps,1<0:81 for this circuit, which

produces a correction of about {10% to the traditional estimate of Vmax. Note

that the same correction results if instead the dc-inductance and reciprocity

constraints are kept, because of a misrepresentation of output voltage. Using (13)

with n1~
ffiffiffiffiffiffiffi
2w1

p
and a1~1=

ffiffiffiffiffi
w1

p
leads to such a circuit, for which Vs<0:90V ’1. In

practice, increasing the capacitive load will quickly reduce the size of this

correction, as the current along the secondary solenoid becomes more uniform.

For weak loads, this correction may also be obscured by the nonlinear dependence

of Cs with the capacitive load [31, 33, 35].

Discussion

As illustrated above, Drude’s prediction in 1904 that the mutual inductance

should be nonreciprocal for an unloaded Tesla transformer is correct. However,

this nonreciprocity assumes that the secondary solenoid acts as a transmission

line, and is only present when the current is nonuniform in the solenoid. Even

then, it seems that this nonreciprocity will have a relatively small effect, one that

may be difficult to measure. Perhaps this is another reason why Drude’s

prediction is nearly forgotten today.

The phenomenon behind Drude’s prediction is a fascinating artifact of

modeling distributed transmission lines with lumped equivalent circuits. The

resulting nonreciprocity is purely artificial and results only from constraints

imposed on equivalent circuits that are incompatible with representing energy

correctly. In the specific example, which follows Drude, the incompatible

constraint was to model the voltage drop across and current into a resonant

inductor—a choice that at first glance may seem straightforward and reasonable.

Even today, this constraint is still used in the equivalent circuits of Tesla

transformers (e.g., [8–10]). Therefore, some care is required to check that the

constraints imposed or assumptions made about an equivalent circuit are

compatible, otherwise this phenomenon may occur. On the other hand, one may

always avoid this phenomenon by constraining a circuit to model energy

correctly, as is common today, with the possible cost of breaking other desirable

constraints as shown in the specific example.
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In summary, distributed systems are not lumped. Modeling transmission lines

and analogous systems with lumped equivalent circuits thus creates an

opportunity for confusion if the lumped perspective is over emphasized. As Paul

Drude predicted in 1904 for Tesla transformers, such systems may require an

artificial nonreciprocity to model couplings with other systems when their

constraints lead to a misrepresentation of energy, despite all components being

reciprocal. This curious, long overlooked prediction is indeed correct, despite its

modern appearance.
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