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ABSTRACT

Measurements of the 0–0 hyperfine resonant frequencies of ground-state 85Rb atoms show a nonlinear dependence on the pressure of the
buffer gases Ar, Kr, and Xe. The nonlinearities are similar to those previously observed with 87Rb and 133Cs and presumed to come from
alkali-metal–noble-gas van der Waals molecules. However, the shape of the nonlinearity observed for Xe conflicts with previous theory, and
the nonlinearities for Ar and Kr disagree with the expected isotopic scaling of previous 87Rb results. Improving the modeling alleviates most
of these discrepancies by treating rotation quantum mechanically and considering additional spin interactions in the molecules. Including
the dipolar-hyperfine interaction allows simultaneous fitting of the linear and nonlinear shifts of both 85Rb and 87Rb in either Ar, Kr, or Xe
buffer gases with a minimal set of shared, isotope-independent parameters. To the limit of experimental accuracy, the shifts in He and N2
were linear with pressure. The results are of practical interest to vapor-cell atomic clocks and related devices.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0145919

I. INTRODUCTION

The study of the interaction between alkali-metal atoms and
chemically inert buffer gases has a long history because of its fun-
damental interest and its significance to many applications, from
pressure measurement1 to laser guidestars.2 In particular, this inter-
action is important to atomic devices like frequency standards
(or clocks) and magnetometers that are based on the microwave res-
onance frequencies of dilute vapors of alkali-metal atoms in cells
filled with buffer gasses, such as the Rb vapor-cell (or gas cell)
clocks on board Global Positioning System satellites.3–6 In these
devices, collisions with the gas shift the resonant frequencies ν away
from their free-atom values ν0 by an amount, ν − ν0, that depends
on the gas composition, pressure, and temperature. Known as the
“pressure” shift,7–11 these shifts are very nearly linear with the buffer-
gas pressure p at typical partial-vacuum cell pressures. Figure 1(a)
provides an example for the “0–0” (or clock) frequencies of 85Rb and
87Rb in Xe gas. Two-body (or binary) collisions, such as Rb + Xe
Ð→ Rb + Xe, that briefly but repetitively alter the hyperfine coupling
in each alkali-metal atom produce the majority of this pressure shift.
The pressure shift and its associated broadening impact the accuracy
and performance of vapor-cell clocks.

Much of this study has focused on the interaction between
alkali-metal atoms and the noble gases.12–15 In part, this is because
these collision pairs readily form weakly bound van der Waals
molecules,16–22 which have long been known to be important to
atomic devices.23–25 Three-body “sticking” collisions (or teratomic
recombination),26–32 such as Rb + Xe + Xe Ð→ RbXe + Xe, pro-
duce the majority of these short-lived molecules, which remain until
later dissociating, primarily in two-body atom-molecule collisions
(or time-reversed teratomic recombination). Though molecule-
forming collisions are relatively rare at typical pressures, their effects
can still be significant because the resulting molecules persist drasti-
cally longer than the duration of binary collisions. For example, the
spin-rotation interaction between molecular rotation and the alkali-
metal electronic spin is often a significant source of spin relaxation
in vapor cells.33,34

Returning to the pressure shift, precise measurements discov-
ered a small nonlinear dependence on the pressure for 87Rb and
133Cs in the heavy noble gases Ar, Kr, and Xe, as Fig. 1 shows.35–37

Modeling explained these observations by considering spin interac-
tions in alkali-metal–noble-gas molecules formed by sticking colli-
sions, and revealed that the observed nonlinearity primarily came
from the gradual turning on of a linear shift from the molecules with
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FIG. 1. Measured 0–0 resonant frequencies ν of 85Rb and 87Rb in Xe at 40.0 ○C
and B = 1 G. (a) The pressure shifts ν − ν0 from the free-atom frequencies ν0 are
very nearly linear with pressure p. (b) and (c) Fitting and removing the linear, lim-
iting shifts sp at high pressures reveals nonlinear pressure shifts ν − ν0 − sp. The
solid curves are fitted nonlinear shifts Δ2ν of (70) due to van der Waals molecules.
Fitting used shared isotope-independent parameters, with fitting residuals given in
Fig. 4. The dashed lines correspond to the total linear shift, sp, minus the contribu-
tion from molecules, smp. The insets illustrate the dominant two- and three-body
collision processes responsible for the pressure shift.

increasing pressure. To date, no comprehensive tests of these models
have been reported, in particular, using data from other alkali-
metal atoms. Measuring these nonlinear pressure shifts provides one
of the few avenue to probe such van der Waals molecules, which
are relevant to clocks,38 spin-exchange optical pumping,39,40 cold
molecule production,16,17,41,42 quantum memories,43,44 and other
areas.

To advance the understanding of spin interactions in alkali-
metal–buffer-gas van der Waals molecules, this Article reports an
isotope comparison of the 0–0 pressure shifts of 85Rb and 87Rb,
which uses measurements with 85Rb in He, N2, Ar, Kr, natural Xe,

and spinless 136Xe buffer gases together with previous 87Rb data.
Nonlinear pressure shifts are present for both isotopes of Rb in Ar,
Kr, and Xe, but their variation with isotope disagrees with previous
theory. The disagreement is most striking for 85Rb in Xe, whose non-
linearity has a shape shown in Fig. 1 that is incompatible with the
shapes allowed by previous modeling, which generally resemble the
shape shown in Fig. 1(c). To resolve these discrepancies, this Article
presents an improved model that includes additional spin interac-
tions in the molecules and treats rotation quantum mechanically,
instead of semi-classically as in previous work. As shown in Fig. 1
for Xe, this model is able to simultaneously fit the data for both Rb
isotopes in pure Ar, Kr, or Xe gas, including all linear and nonlinear
shifts, by incorporating the dipolar-hyperfine interaction in addi-
tion to the hyperfine-shift and spin-rotation interactions considered
previously.

This Article is organized as follows: Sec. II provides a the-
oretical model for the linear and nonlinear pressure shifts of all
hyperfine transitions in an alkali-metal atom from X 2Σ+ van der
Waals molecules, reproducing all previous models except for the
modifications of Camparo45,46 discussed in Sec. V. The derivation
includes the hyperfine-shift and spin-rotation interactions of previ-
ous work, but predicts an important correction to the spin-rotation
contribution. Additionally, it includes the Zeeman interaction and
the dipolar- and quadrupolar-hyperfine interactions. Section III
describes the experimental measurement of the pressure shift data
and the mitigation of systematic effects. Section IV reports analy-
sis of 85Rb and 87Rb data in He, N2, Ar, Kr, and Xe gases, as well
as 85Rb data in Xe and 136Xe. The data for He and N2 were lin-
ear to within experimental error, and provide a check of systematic
errors. The model of Sec. II successfully captures the unusual shape
of the nonlinearity of 85Rb in Xe, and successfully fits the nonlin-
ear as well as the linear shifts of both Rb isotopes in each nonlinear
gas. Section V discusses these results as well as a recent analysis of
the Xe data by Camparo.45,46 Section VI concludes the Article, and
the supplementary material provide additional details, figures, and
fitting parameters.

II. THEORETICAL MOLECULAR PRESSURE SHIFT
Between collisions, a free alkali-metal atom evolves according

to a ground-state spin Hamiltonian

H0 = A I ⋅ S − μ ⋅ B, (1)

where the first term is a Fermi-contact hyperfine interaction cou-
pling the nuclear spin I and electronic spin S with a magnetic-dipole
coupling coefficient A. The second term is a Zeeman interaction
of the total magnetic-dipole moment μ = −gSμBS + gIμN I with an
externally applied magnetic field B of amplitude B = ∣B∣. Here, gS
is the electronic g factor, μB is the Bohr magneton, gI is the nuclear
g factor, and μN is the nuclear magneton. Let us assume that any
external field is static and oriented along the lab-frame Cartesian
unit vector z, such that B = Bz.

For vapor-cell clocks, the field B is typically weak enough
that the dominant interaction in H0 is the hyperfine coupling.
The ground-state energy eigenstates are very nearly the eigenstates
∣F m⟩ of the total spin angular momentum F = I + S with quan-
tum number F and azimuthal quantum number m along z. The
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hyperfine coupling splits the sublevels into upper and lower
hyperfine manifolds with total angular momentum

F =
⎧⎪⎪⎨⎪⎪⎩

a = I + 1/2,

b = I − 1/2,
(2)

respectively. The nuclear spin I and electronic spin S = 1/2 are good
quantum numbers for these sublevels.

Vapor-cell clocks and related devices measure transitions
between these hyperfine manifolds. To proceed, let us consider an
“α–β” hyperfine transition between the free-atom eigenstates

∣α⟩ = ∣a α⟩ and ∣β⟩ = ∣b β⟩. (3)

Clocks conventionally use the 0–0 transition (α = β = 0) because it
has no first-order dependence on the field B. Ideally, without colli-
sions, the measured resonant frequency would be the Bohr angular
frequency for the transition,

ωαβ = (Eaα − Ebβ)/h̵, (4)

where h is the reduced Planck constant and the energies
EFm = ⟨F m∣H0∣F m⟩. These frequencies are approximately

ωαβ = 2π ναβ ≈
A[I]
2h̵
+ gSμBB
[I]h̵ (α + β), (5)

to first order in the field B and ignoring the small Zeeman interac-
tion with the nuclear spin. Here and subsequently, the shorthand of
brackets about a single quantum number,

[J] = 2J + 1, (6)

denotes its spin multiplicity. Table I provides values for ν00 and other
atomic parameters of interest to fitting functions.

A. Pressure shifts from sticking collisions
We can calculate the pressure shift from molecule-forming col-

lisions using a density-matrix approach as follows:37 The density
operator ρ for ground-state alkali-metal atoms evolves according to

∂ρ
∂t
= − i

h̵
[H0, ρ] + ⟨ 1

T
(ŜρŜ † − ρ)⟩, (7)

which for simplicity ignores the effects of optical and microwave
interactions as well as binary and other non-sticking collisions.
The first term on the right models free-atom evolution. The sec-
ond term models sticking collisions with angle brackets denoting

TABLE I. Atomic parameters for fitting functions. The unperturbed, ground hyperfine
frequencies ν00 are rounded to the nearest Hz. The values of gI are from nuclear
magnetic-dipole moments μI = gI IμN in Ref. 47. The values of Q are inferred from
molecules, and expected to vary slightly with the particular molecule.48,49

Atom I ν00 (Hz) gI (Ref. 47) Q (barns) (Ref. 48)

85Rb 5/2 3 035 732 439 +0.541 19 +0.276 ± 0.002
87Rb 3/2 6 834 682 611 +1.834 21 +0.134 ± 0.002

an ensemble average over molecules and their formation rates 1/T.
Ŝ is a scattering-matrix (S-matrix) operator that captures bound-
atom evolution by converting the wave function of a free atom into
that of a free atom just exiting a collisional perturbation, following
Chap. 10 of Ref. 34. For a particular molecule with lifetime τ, this
S-matrix is

Ŝ = exp (−iH1τ/h̵) exp (iH0τ/h̵), (8)

where H1 is the spin Hamiltonian for the bound-atom evolution.
The bound-atom spin Hamiltonian H1 includes additional

interactions that only contribute during the time spent in the
molecule. For Rb, the most significant interactions are expected to
be the hyperfine-shift (hfs), electronic spin-rotation (sr), dipolar-
hyperfine (dh), and quadrupolar-hyperfine (qh) interactions,

H1 ≈ H0 + Vhfs + Vsr + Vdh + Vqh, (9)

which are each addressed below.39 Other interactions are assumed
negligible, such as nuclear spin-rotation and octupole–hyperfine
interactions. Interactions with spins in the bound partner like spin
exchange are present, but as discussed below, measurements with
natural Xe and spinless 136Xe agree, suggesting they are negligible
for typical buffer gases. This may no longer apply if, for example, the
buffer gas is spin polarized.

Ideally, the measured α–β frequency is equal to the precession
frequency of the coherence ⟨α∣ρ∣β⟩. In the secular approximation,
molecules from sticking collisions produce a pressure shift

Δν = − Im⟨⟨α∣Ŝ∣α⟩⟨β∣Ŝ
†∣β⟩

2πT
⟩ (10)

of the temporal frequency of this coherence as well as a correspond-
ing damping.37 As before, angle brackets denote averaging over
molecules.

For a given rovibrational state, the lifetime is expected to
follow an exponential distribution with mean τ. We can aver-
age over molecular lifetimes by integrating ∫ ∞0 e−t/τΔν dt/τ after
introducing bound-atom spin eigenstates ∣μ⟩ of H1 with energies
Eμ = ⟨μ∣H1∣μ⟩. Averaging then reduces the shift (10) to a sum over
bound-atom-state indices μ and ν,

Δν =∑
μ,ν
⟨ ∣⟨α∣μ⟩⟨ν ∣β⟩∣

2(ωμ ν − ωαβ)τ
2πT [1 + (ωμ ν − ωαβ)2τ2]

⟩, (11)

where the bound-atom Bohr frequencies are

ωμ ν = (Eμ − Eν)/h̵. (12)

Here, and subsequently in the next few sections, a bar is added to
help distinguish bound-atom quantities and states from those of free
atoms. This is because, as we will see below, the indices μ and ν are
effectively rotated azimuthal quantum numbers m, similar to α and
β for free atoms. As a result, both μ and α ∈ [−a, a], and both ν and
β ∈ [−b, b]. However, ∣μ⟩ and ∣ν⟩ do not follow (3), unlike ∣α⟩ and
∣β⟩.

Equation (11) is the pressure shift from molecules. Its rough
dependence on buffer-gas pressure p follows from noting that the
three-body formation rate 1/T ∝ p2 and the collision-limited life-
time τ ∝ 1/p. At low pressures there is no shift, limp→0Δν ∝ p3, but
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at high pressures there is a linear shift, limp→∞Δν ∝ p. Thus, the
rough shape of Δν with pressure is a gradual turning on of a linear
shift, with a detailed shape in between that is sensitive to molecular
parameters. One interpretation of the shape of Δν vs the inverse life-
time 1/τ ∝ p is as an interference pattern formed by all of the ways
that an α–β coherence connects through a molecule via discrete μ–ν
pathways during the lifetime τ.

In measurements, the dominant linear shift is typically that
from binary collisions instead of sticking collisions.50 Therefore, it
is convenient to artificially separate the molecular shift into linear
and nonlinear parts,

Δν = sm p + Δ2ν, (13)

to highlight the nonlinearity that is due to sticking collisions. Here,
the infinite-pressure linear molecular slope is

sm = lim
pÐ→∞

Δν/p

=∑
μ,ν
⟨ ∣⟨α∣μ⟩⟨ν ∣β⟩∣

2(ωμ ν − ωαβ)τ
2πTp

⟩, (14)

and the remaining nonlinear shift from molecules is

Δ2ν = Δν − sm p

= −∑
μ,ν
⟨ ∣⟨α∣μ⟩⟨ν ∣β⟩∣

2(ωμ ν − ωαβ)3τ3

2πT [1 + (ωμ ν − ωαβ)2τ2]
⟩. (15)

By construction, the nonlinear shift is zero at infinite pres-
sure, limp→∞ Δ2ν→ 0, and as a result, is linear at low pressure,
limp→0 Δ2ν = −smp, as highlighted in Fig. 1 and later figures. To
avoid confusion, note that Δ2ν is not the complete pressure shift
from molecules. The true molecular pressure shift is the Δν of (11).
We will focus on the molecular pressure shift Δν below and return
to the linear, limiting molecular slope sm of (14) and nonlinear shift
Δ2ν of (15) to construct fitting functions.

To calculate these shifts, what remains is to determine the
bound-atom eigenstates ∣μ⟩ and their energies Eμ and to average
over rovibrational states, their formation rates, and their directions
of rotation.

B. Connecting bound-atom and molecular-spin
eigenstates

To determine the bound-atom eigenstates ∣μ⟩, we must choose
how to treat molecular rotation. Previous work35–37,45,46 approxi-
mated rotation semi-classically in the interactions and thus sepa-
rately from quantum spins. However, the derivation of (11) with
an S-matrix requires the bound-atom ∣μ⟩ to be energy eigenstates.
While bound, the true energy eigenstates are the molecular-spin
eigenstates formed by the coupling of alkali-metal atomic spins
with molecular rotation. Therefore, we will include rotation quan-
tum mechanically in the molecular spin states, connect them with
the bound-atom spin states, and then take a classical large-rotation
limit. The energies for the interactions considered agree to leading
order for both approaches, though their interpretation with respect
to quantization is different.

The molecules of interest are loosely bound heteronuclear
diatomic molecules in their electronic ground states, composed of

a 1S0 noble-gas atom and a 2S1/2 alkali-metal atom, with molecular
term symbol X 2Σ+. Their total electronic spin angular momentum
S is solely due to the alkali-metal atom, so the quantum number
S = 1/2. Their total orbital angular momentum L = 0, with axial
component Λ = 0, so these molecules follow Hund’s case (bβS) with
their electronic spin not strongly coupled to the internuclear axis.51

The total rotational angular momentum of the nuclei is N with quan-
tum number N. As explained above, we will ignore the nuclear spin
from the noble-gas atom.

The dominant spin interaction is expected to be the Fermi-
contact hyperfine coupling between I and S, just as for the free
alkali-metal atoms, so the resultant F = I + S is still a good quan-
tum number. The total angular momentum for the molecule is then
the resultant G = F +N. Note that here, and subsequently, the def-
initions of F and G are intentionally swapped compared to those
in Brown and Carrington,51 which is frequently referenced below,
so that F has the same definition for ground-state atoms as for
molecules.

As we will see below, the Zeeman interaction with B in (1)
sets the quantization axis for the molecules, just as for free atoms.
The remaining spin-rotation, dipolar-hyperfine, and quadrupolar-
hyperfine interactions do not depend on the azimuthal quan-
tum number mG, just as the spin–orbit, dipolar-hyperfine, and
quadrupolar-hyperfine interactions in excited alkali-metal atomic
spin states do not depend on the total m. Thus, for up to moder-
ate applied magnetic fields the molecular spin eigenstates are very
nearly the eigenstates

∣ISF; FNG; G mG⟩ (16)

of the total spin angular momentum G with quantum number G and
azimuthal quantum number mG along z, in the notation of Brown
and Carrington.51 As will be shown below, G plays the role of m
in a rotated, bound-atom spin state, connecting this with previous
work.37 For convenience, let us use the shorthand

∣FNG g⟩ = ∣ISF; FNG; G g⟩ (17)

with g = mG, when the values of I, S, and N are understood. Note that
for sufficiently strong applied magnetic fields, there will be mixing
between G states, just as between F states for free atoms.

To use these molecular eigenstates, first replace the bound-
atom eigenstates in (11) with the substitutions

∣μ⟩Ð→ ∣F = a, N, G, g⟩ (18)

∣ν⟩Ð→ ∣F′ = b, N, G′, g′⟩ (19)

∑
μ,ν
Ð→ ∑

G,g,G′ ,g′
, (20)

where (3) set F and F′. Then, replace the bound-atom Bohr
frequencies (12) and energies with the substitutions

ωμ ν Ð→ ωGg;G′g′ = (E∣aNGg⟩ − E
∣bNG′g′⟩)/h̵ (21)

Eμ Ð→ E∣aNGg⟩ = ⟨aNG g∣H1∣aNG g⟩ (22)
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Eν Ð→ E
∣bNG′g′⟩ = ⟨bNG′ g′∣H1∣bNG′ g′⟩. (23)

Finally, the free-atom spin eigenstates (3) have to be modified to
include a tensor product,

∣α⟩Ð→ ∣a α⟩⊗ ∣ψN⟩ (24)

∣β⟩Ð→ ∣b β⟩⊗ ∣ψN⟩, (25)

with a rotational wave function ∣ψN⟩ that will be used to average over
the direction of rotation.

C. Hyperfine propensity rule
Before we continue, note that the above approximations

assume an adiabatic propensity rule that conserves the alkali-metal
hyperfine spin state in the three-body recombination processes of
both molecule association and dissociation. This might be surprising
because the recombination processes are necessarily nonadiabatic.
However, these processes are driven by mechanical forces and at
interparticle distances where the interaction is likely independent
of spin, in particular, because the weakly bound van der Waals
molecules are held together by long-range dispersion forces, not
short-range bonds. Recent state-to-state recombination experiments
with ultracold Rb support choosing this propensity rule.28

D. Large-N approximation
To simplify the matrix elements in (11), we will take a classi-

cal limit of N ≫ 1, which is justified for RbAr, RbKr, and RbXe as
shown in Table II.24,25 The molecular spin eigenstates decompose
into atomic and rotational parts as

∣FNG g⟩ = ∑
m,mN

CG g
Fm,NmN

∣F m⟩⊗ ∣N mN⟩. (26)

For large N (and thus large G), the quantum number F ≪ G
and N, and the Clebsch-Gordon coefficient is approximately
[c.f. Eq. 8.9.1(1) of Ref. 52]

∣CG g
Fm,NmN

∣ ≈ δg,m+mN ∣d
(F)
m,G−N(θGg)∣ (27)

where the angle between G and the lab z axis is

θGg = arccos (2g/[G]). (28)

TABLE II. Molecular parameters for reference from Bouchiat et al.24,25 The values
given as ranges without uncertainties are theoretical estimates. B1 = ⟨γN⟩/(gSμB)
is an experimental, effective spin-rotation magnetic field. The bottom row estimates
the magnitude of the spin-rotation parameter (49) as ∣ψp∣sr = gSμBB1⟨τp⟩/h.

Parameter RbAr (Ref. 25) RbKr (Ref. 24) RbXe (Ref. 24)

⟨Tp2⟩ (ms Torr2) 16.1 ± 1.3 10.6 ± 0.5 4.29 ± 0.23
⟨τp⟩ (ns Torr) 48.5 ± 1.9 56.9 ± 1.7 34 – 61
⟨N⟩ 30.5 – 33.3 41.5 63.2 – 76.7
B1 (Gauss) 1.19 ± 0.05 9.59 ± 0.28 38.1 ± 1.6
∣ψp∣sr (rad Torr) 1.016 ± 0.040 9.61 ± 0.40 31.9 ± 9.2

The Wigner “little” d-function52 is

d(F)m,m(θ) = ⟨F m∣ exp (−iθFy)∣F m⟩ (29)

where the the azimuthal quantum number

m = G −N ∈ [−F, F], (30)

is that of an effective bound-atom state ∣F m⟩. The approxima-
tion (27) is surprisingly adequate for values of N that are far from
asymptotic, such as those in fitting results to come.

Using (26) and (27) with (18) and (19), the matrix elements in
(11) simplify to

∣⟨α∣μ⟩∣2 → ∣d(a)α,μ (θGg)⟨ψN ∣N, g − α⟩∣
2

(31)

∣⟨ν∣β⟩∣2 → ∣d(b)β,ν (θG′g′)⟨ψN ∣N, g′ − β⟩∣
2

(32)

for large N. Here, the indices μ = G −N ∈ [−a, a] and ν = G′ −N
∈ [−b, b], or equivalently G and G′, play the role of m for rotated,
bound-atom spin eigenstates, as in previous work.36,37,45,46

E. Averaging over the direction of rotation
To average over the direction of rotation (see supplementary

material), replace the rotational wave function with the substitution

∣ψN⟩Ð→ ∣N n⟩ (33)

and uniformly average over n. Note that for large N, G ≈ G′ ≈ N and
g ≈ g′ ≈ n in Δν. As a result, the angles θGg ≈ θG′ g′ and are approx-
imately continuous. After the substitution (33), this average is then
approximately

⟨Δν⟩ψN =
1
[N]

N

∑
n=−N

Δν ≈ 1
2∫

1

−1
Δν d cos (θ) (34)

with a shared angle

θ ≈ θGg ≈ θG′g′. (35)

Together with the substitutions (18)–(25), (31), and (32), this
makes the nonlinear pressure shift (11)

Δν =∑
μ,ν
∫

1

−1
⟨

f αβμ ν(θ)(ωμ ν(θ) − ωαβ)τ
4πT[1 + (ωμ ν (θ) − ωαβ)2τ2]

⟩d cos (θ), (36)

where the angular weight functions

f αβμ ν(θ) = ∣d
(a)
α,μ (θ) d(b)β,ν (θ)∣

2
(37)

generalize those in Eq. (4.94) of Ref. 37. The frequencies

ωμ ν(θ) = [E∣a,N,G=μ+N,g=n+α⟩(θ)
− E
∣b,N,G′=ν+N,g′=n+β⟩(θ)]/h̵ (38)

depend on the shared angle θ of (35) and (28) if the energies depend
on n ≈ cos(θ)[N]/2 via g or g′, which occurs only for the Zeeman
interaction as shown below.
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F. Single-rovibrational-state approximation
The remaining average to complete is that over all rotational

and vibrational states allowed by the alkali-metal–noble-gas interac-
tion potential V(R).12–15 This average superposes the differing shifts
from each rovibrational state. Unfortunately, there is not enough
information currently available about the spin interactions of inter-
est for this to be tractable or trustworthy. Instead, to proceed we
will approximate this average using a single rovibrational state with
effective parameters, following all previous work. That is, we will
assume the average is performed over the parameters, keeping the
functional form of the shift unchanged.

In this approximation, the Δν of (36) becomes

Δν = ( 1
4π⟨T⟩)∑μ,ν

∫
1

−1

f αβμ ν(θ) ϕ
αβ
μ ν(θ)

1 + [ϕαβμ ν (θ)]
2 d cos (θ) (39)

in terms of averaged molecular phase shifts

ϕαβμ ν(θ) = ⟨[ωμ ν(θ) − ωαβ]τ⟩ (40)

that generalize mμνϕ in previous work.37 The remaining angle brack-
ets here, and subsequently, denote a rovibrational expectation value
assuming a single rovibrational state.

Unfortunately, this approximation limits the comparison of
fitted values of parameters with those inferred from relaxation mea-
surements. For example, the distribution of states could produce
both a zero shift (39) and significant damping, because the numer-
ator is linear while the corresponding numerator for damping is
nonlinear. Likewise, even without this approximation, the appro-
priate distributions may conceivably differ, since the relaxation
need not be coherent. As a result, the fitted values for ⟨T⟩ and
⟨N⟩ for the shift (39) are expected to be similar, but not neces-
sarily equal to those from relaxation measurements such as shown
in Table II.

G. Interaction energies and fit parameters
Last, what remains is to evaluate the molecular interaction

energies and choose their fit parameters. The results agree to lead-
ing order in 1/N with calculations from a bound-atom approach.
For fitting, it is convenient to use pressure-independent and isotope-
independent parameters. Noting that τp is very nearly pressure
independent, let us introduce a molecular phase–shift parameter

(ϕαβμν(θ) p) = (ϕp)hfs + (ϕμνp)sr + (ϕαβμν(θ) p)
Z

+ (ϕμνp)dh + (ϕμνp)qh (41)

with pressure-independent contributions from each interaction
to be determined below. For convenience, the bar notation is
remove from the indices μ and ν here and subsequently. Isotope-
independent fit parameters will be introduced for each contribution.
The top line has the contributions from the three interactions pre-
viously considered, including the Zeeman (Z) interaction in (1). As
shown below, only the Zeeman contribution depends on α, β, and θ.
The bottom line has the contributions from the two interactions not
previously considered.

1. Hyperfine-shift interaction
The perturbation to the Fermi-contact interaction is modeled

by the hyperfine-shift interaction (hfs),

Vhfs = δA(R) I ⋅ S, (42)

where δA(R) is a potential that depends on internuclear distance R.
This interaction is diagonal in G and mG, and has the same form as
the Fermi-contact interaction in (1). It is the dominant spin interac-
tion responsible for the linear pressure shift.7–10 The potential δA(R)
is generally expected to change sign at least once at small R for our
molecules of interest.9,10,37,39,53–60 As a result, the sign of the fitting
parameters for binary and molecular shifts need not agree.36

The molecular energies follow Eqs. (10.49) and (11.80) in
Brown and Carrington51 and are the same as those in the atomic
case,

Ehfs
∣FNGg⟩ = ⟨δA(R)⟩1

4
{(F − b)[b] + (F − a)[a]}, (43)

where brackets denote a rovibrational expectation value.
The molecular phase–shift parameter

(ϕp)hfs =
⟨δA(R) τ⟩p [I]

2h̵
= 2πν00(ψp)hfs (44)

is independent of μ and ν, and equal to (ϕp) in previous work.35–37

For fitting data, the parameter

(ψp)hfs = ⟨(δA(R)/A) τ⟩p (45)

(units of s Torr) is pressure independent and isotope independent,
because the ratio δA/A is isotope independent.37 The value of A used
here and in the ν00 of (5) includes all perturbations other than the
pressure shift. That is, the values ν00 are zero-pressure intercepts,
though in practice, ν00 may be replaced by the ideal values in Table I
with little impact.

2. Spin-rotation interaction
The electronic spin-rotation interaction (sr) is

Vsr = γ(R) S ⋅N, (46)

where γ(R) is a potential that depends on internuclear
distance.33,34,39,61,62 While the literature may convey a general
impression that ⟨γ(R)⟩ should be positive, experiment and theory
confirm it is negative for LiAr.63,64 This interaction can have
multiple physical origins,51 but the most significant origin here is
expected to be the spin–orbit interaction in the noble-gas atom.33

This interaction is diagonal in G and mG.
The molecular energies follow Eqs. (10.48) and (11.85) in

Brown and Carrington,51

Esr
∣FNGg⟩ =

(−1)F−a⟨γ(R)⟩
[I] (m⟨N⟩ + m(m + 1) − F(F + 1)

2
) (47)

where m = G −N. The first term matches previous work.37 The sec-
ond term is a correction of relative order 1/⟨N⟩ and resembles the
dipolar and quadrupolar energies below.
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The molecular phase–shift parameters are

(ϕμνp)sr =
(ψp)sr

[I]

× (μ + ν + 2μ(μ + 1) + 2ν(ν + 1) − 4I(I + 1) − 1
4⟨N⟩ ) (48)

using a pressure- and isotope-independent parameter

(ψp)sr = ⟨γ(R)Nτ⟩p/h̵ (49)

(units of rad Torr) that equals r1ϕp[I] in previous work.36,37

Table II provides estimates of the magnitude of (ψp)sr from
relaxation measurements. The sign of (ψp)sr has an effect on Δν
only through the small 1/N correction term on the second line
of (48). This correction term is not present in previous bound-
atom models36,37,45,46 and, surprisingly, contributes to the linear
shift in addition to the nonlinear shift, as shown below. This term
depends on (ψp)sr/⟨N⟩, so is independent of N in the single-state
approximation.

3. Dipolar-hyperfine interaction
The electron-nuclear dipolar (or anisotropic hyperfine-shift)

interaction (dh) can be expressed in many forms.51 For a strong
coupling of I and S, a convenient form is

Vdh =
√

6gSμBgIμN(
μ0

4π
)T2(C) ⋅ T2(S, I), (50)

following the notation of Eq. (1.56) in Brown and Carrington,51

where μ0 is the vacuum permeability and T2(C) is a tensor involv-
ing the alkali-metal valence electron position about its nucleus.
This interaction is diagonal in G and mG. For reference, using
Eq. (5.116) in Ref. 51, an effective Hamiltonian for this interac-
tion is Vdh ≈ t0(R) I ⋅ (3R̂R̂ − 𝟙) ⋅ S, where the axial magnetic-dipole
hyperfine coefficient t0(R) = gSμBgIμN( μ0

4π )⟨η,Λ∣T2
0(C)∣η,Λ⟩ mea-

sures the spherical asymmetry of the Rb valence electronic wave-
function, R̂ is the internuclear axis unit vector, and 𝟙 is the unity
dyadic tensor. The coefficient t0 is related to the Frosh and Foley
parameter c = t0/3.51

The molecular energies for (50) follow Eqs. (1.60),
(8.513–8.515), (10.50), and (11.81–11.84) in Brown and Car-
rington.51 The calculation includes a Wigner 9j symbol that is
available in Table 10.3 of Ref. 52. These energies are

Edh
∣FNGg⟩ = (−1)F−b ⟨t0(R)⟩

2[I]

× ⟨3XF,m(XF,m − 1) − 4N(N + 1)F(F + 1)
(2N − 1)(2N + 3) ⟩ (51)

for the quantities

XF,m = F(F + 1) −m(m + [N]) (52)

and m = G −N, assuming I ≥ 1/2. The brackets apply to the
remaining dependence on N.

The molecular phase–shift parameters are

(ϕμνp)dh =
gI(ψp)dh

2[I] ⟨
2N(N + 1)[I]2 − 3Y+μ,ν

(2N − 1)(2N + 3) ⟩ (53)

for the quantity

Y±μ,ν = Xa,μ(Xa,μ − 1) ± Xb,ν(Xb,ν − 1) (54)

using a pressure- and isotope-independent parameter

(ψp)dh = ⟨t0(R) τp⟩/(gI h̵) (55)

(units of rad Torr). For reference, the leading-order term in a 1/⟨N⟩
expansion is

(ϕμνp)dh ≈ gI(ψp)dh(
[I]
4
− 3(μ2 + ν2)

2[I] ). (56)

The first part resembles the hyperfine-shift interaction and the
second part modifies the shape of the nonlinear shift.

4. Quadrupolar-hyperfine interaction
The nuclear electric quadrupole interaction (qh) can be

expressed in many forms.51 For a strong coupling of I and S, a
convenient form is

Vqh = −e T2(Q) ⋅ T2(∇E), (57)

following the notation of Eq. (1.28) in Brown and Carrington.51

Here, Q is the quadrupole moment of the alkali-metal nucleus, with
values given in Table I. This interaction is diagonal in G and mG. For
reference, using Eqs. (5.116), (7.158), and (7.192) in Ref. 51, an effec-
tive Hamiltonian for this interaction is Vdh ≈ eq0(R)Q

4I(2I−1) I ⋅(3R̂R̂ − 𝟙) ⋅I,
where q0(R) is a standard measure of the electric-field gradient along
the internuclear axis.

The molecular energies for (57) follow a derivation similar
to Eq. (9.93) and Appendix 8.4 in Brown and Carrington,51 using
Eqs. (5.173), (9.13–14), and (7.159) in that reference. These energies
are

Eqh
∣FNGg⟩ =

e⟨q0(R)Q⟩
4I(2I − 1) (

(−1)F−a

[I] − 1
2
)

× ⟨3XF,m(XF,m − 1) − 4N(N + 1)F(F + 1)
(2N − 1)(2N + 3) ⟩ (58)

for m = G −N and XF,m of (52), assuming I ≥ 1. The brackets apply
to the remaining dependence on N.

The molecular phase–shift parameters are

(ϕμνp)qh =
3(ψp)qhQ

8I(2I − 1)[I]⟨
2Y+μ,ν − [I]Y−μ,ν

(2N − 1)(2N + 3)⟩ (59)

for the quantities Y±μ,ν of (54), using a pressure- and isotope-
independent parameter

(ψp)qh = e⟨q0(R) τp⟩/h̵ (60)

(units of rad Torr/barn). For reference, the leading-order term in a
1/⟨N⟩ expansion is

(ϕμνp)qh ≈
3(ψp)qhQ

8I(2I − 1)[I] [ν
2(2I + 3) − μ2(2I − 1)]. (61)

This term modifies the shape of the nonlinear shift.
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5. Zeeman interaction
The Zeeman interaction (Z) in H0 has both nuclear and elec-

tronic spin contributions. For simplicity, as in previous work,35–37

let us ignore the smaller nuclear contribution. Let us also ignore
the slight variation in the g-factor of alkali-metal–noble-gas van der
Waals molecules.65 Then the Zeeman interaction is very nearly

HZ = −μ ⋅ B ≈ gSμB B ⋅ S. (62)

This interaction sets the atomic and molecular quantization axes to
be along the applied field B in the lab frame, so is diagonal in mG.
However, it is not diagonal in G, and for sufficiently large fields
B, will induce mixing between low-field eigenstates with different
values of G.

The molecular energies follow Eqs. (11.91)–(92) in Brown and
Carrington.51 For the electronic spin only, the energies are

EZ
∣FNGg⟩ = (−1)F−agSμBB( 2g

[G])

× ([G]
2
)G(G + 1) + F(F + 1) −N(N + 1)

2G(G + 1) , (63)

where the factor of 2g/[G] was not reduced to leave the connection
with (28) clear. The molecular phase–shift parameters are

(ϕαβμνp)Z ≈
gSμBB⟨τp⟩
[I]h̵ [ − α − β + cos (θ)

× (μ + ν + 4I(I + 1) + 1 − 2μ2 − 2ν2

4⟨N⟩ )], (64)

using (28) and (35) and including only the first and second terms in a
1/N expansion. The first term is equivalent to −(r1ϕp)(α + β) in the
low-field limit of previous work.37 The second term is a small correc-
tion with a form that roughly resembles the dipolar and quadrupolar
energies above.

H. Fitting functions
Finally, using the above averages and approximations, we can

construct fitting functions for data analysis as follows: We will first
do this for the general case, and then simplify the functions for the
particular case of the 0–0 transition with a negligible applied field B,
which describes the Rb data well.

Consider a dataset of α–β transition frequencies {ν(p)} of a
particular alkali-metal atom measured at different pressures p of a
single-species buffer gas (i.e., He or Xe, but not a mixture). We may
fit this dataset using a fitting function

f (p) = ν0 + s p + Δ2ν (65)

with a zero-pressure intercept ν0, a total pressure-shift slope s,
and a nonlinear pressure-shift function Δ2ν. Explicit forms for the
nonlinear shift are given below, which use atomic and molecular
parameters in Tables I and II.

In the data analysis to follow, we will simultaneously fit pairs of
two such data sets, one for 85Rb and one for 87Rb, measured sep-
arately for the same single-species buffer gas. To do this, we will
separate the total linear slope s = sb + sm into its binary (sb) and
molecular (sm) contributions, and use a shared fitting parameter

σb instead of the isotope-dependent parameter sb. The expected iso-
topic scaling of the binary slope follows the hyperfine-shift interac-
tion, so a convenient choice for a pressure- and isotope-independent
parameter is the fractional-frequency-shift slope σb = sb/ν00 (units of
1/Torr). The fitting function (65) then becomes

f (p) = ν0 + (sb + sm) p + Δ2ν

= ν0 + (ν00 σb + sm) p + Δ2ν, (66)

with explicit forms for the molecular slope given below. This fit-
ting function is then used for each Rb-isotope dataset, with separate
zero-pressure intercepts ν0 for each isotope. The remaining molec-
ular slopes and nonlinear shifts are evaluated appropriately for each
isotope using shared isotope- and pressure-independent fitting para-
meters. Note that the same fitting parameter is used for ⟨N⟩ in all
interactions.

1. Fit function for moderate applied fields
For moderate applied-field strengths B such that G is still a good

quantum number, the nonlinear pressure shift is given by (39) with
molecular phase–shift parameters given in (41), (44), (48), (53), (59),
and (64). Re-arranging to use pressure-independent parameters, the
linear molecular slope becomes

sm = (
1

4π⟨Tp2⟩
)∑
μ,ν
∫

1

−1
f αβμ ν(θ)[ϕαβμν(θ)p] d cos (θ), (67)

and the nonlinear shift becomes

Δ2ν = ( −1
4π⟨Tp2⟩

)∑
μ,ν
∫

1

−1

f αβμ ν(θ)[ϕαβμν(θ)p]
3
p

p2 + [ϕαβμν(θ)p]
2 d cos (θ), (68)

where the pressure-independent parameter ⟨Tp2⟩ describes
molecule formation.

The molecular slope (67) evaluates to a function of the field,

sm(B) = sm(0) −
gSμBB⟨τp⟩

3π[I]h̵⟨Tp2⟩
(α + β), (69)

for I ∈ {1/2, 3/2, 5/2, 7/2} and potentially higher half-integral val-
ues. The first term is the same as the zero-field value given in
Sec. II H 2, and varies with the transition. The second term is a high-
pressure correction to the linear Zeeman splitting of the alkali-metal
atom, because the coherence ⟨α∣ρ∣β⟩ samples differing Zeeman shifts
as it connects through the molecule via different μ–ν pathways.

2. Fit function for negligible applied fields
For magnetic fields that are small enough to not influence the

nonlinear shift significantly while still defining the quantization axis,
we may set B = 0 such that the phase–shift parameters (ϕαβμνp) of (41)
do not depend on θ. Then (68) becomes

Δ2ν ≈ Δ2
2ν = −(

1
2π⟨Tp2⟩

)∑
μ,ν

Wαβ
μν (ϕαβμνp)3p

p2 + (ϕαβμνp)2 (70)
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TABLE III. Weights W00
μν of (72) for the 0–0 transition vs nuclear spin quantum number

I. Common alkali-metal atoms are indicated for convenience. The rows correspond to
μ ∈ [a, a − 1, . . . , 1 − a,−a], and the columns to ν ∈ [b, b − 1, . . . , 1 − b,−b].

I W00
μν

1/2
⎛
⎝

1

1

1

⎞
⎠
/3

3/2 (87Rb)
⎛
⎜⎜⎜⎜
⎝

9 3 9

6 9 6

5 11 5

6 9 6

9 3 9

⎞
⎟⎟⎟⎟
⎠
/105

5/2 (85Rb)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

50 20 25 20 50

30 45 15 45 30

24 36 45 36 24

23 29 61 29 23

24 36 45 36 24

30 45 15 45 30

50 20 25 20 50

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

/1155

7/2 (133Cs)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

245 105 105 91 105 105 245

140 210 84 133 84 210 140

110 150 204 73 204 150 110

100 120 180 201 180 120 100

97 117 141 291 141 117 97

100 120 180 201 180 120 100

110 150 204 73 204 150 110

140 210 84 133 84 210 140

245 105 105 91 105 105 245

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

/9009

with a subscript introduced for Sec. II H 3.The fitting parameters
within (ϕαβμνp) are given by (41), (44), (48), (53), and (59). The
negligible-field weight coefficients

Wαβ
μν =

1
2∫

1

−1
f αβμν(θ) d cos θ (71)

generalize the Wσ = ∑μW00
μ,σ−μ in previous work.37 For the 0–0

transition, these weights are

W00
μν = (−1)μ+ν∑

k

1
[k]C

k0
a0;a,0Ck0

aμ;a,−μCk0
b0;b,0Ck0

b,ν;b,−ν. (72)

Table III gives explicit values for the weights of interest here.
The corresponding molecular linear slope (67) becomes

sm(0) = (
1

2π⟨Tp2⟩
)∑
μ,ν

Wαβ
μν (ϕαβμ νp), (73)

which is the zero-applied-field value of (69), and evaluates to

sm(0) =
1
⟨Tp2⟩

(ν00(ψp)hfs −
(ψp)sr[I]
12π⟨N⟩

− gI(ψp)dh[I][1 + 2I(I + 1)]
10π(2⟨N⟩ − 1)(2⟨N⟩ + 3)

+ (ψp)qhQ[I][3 − 4I(I + 1)]
40πI(2I − 1)(2⟨N⟩ − 1)(2⟨N⟩ + 3)) (74)

for I ∈ {1/2, 3/2, 5/2, 7/2} and potentially higher half-integral val-
ues. Note that the quadrupolar interaction is not allowed for I = 1/2.
The first term from the hyperfine-shift interaction shares an iso-
topic scaling with sb ∝ [I]A, so is indistinguishable from sb except
for how parameters are fitted via Δ2ν. The second term from the
spin-rotation interaction has a different isotopic scaling than sb, so is
distinguishable by comparing isotopes as discussed in Sec. IV E. , in
which case it tends to dominate the fitted value of ⟨N⟩. The remain-
ing contributions from the dipolar and quadrupolar interactions are
of second and higher order in 1/⟨N⟩ and also have different isotopic
scalings.

The threshold to enter the negligible-field regime depends
on the choice of transition and the fit parameter values (see
supplementary material). Numerically, for the 0–0 transition, this
regime seems to reliably occur for ∣B∣ ≲ ∣B1∣ for the spin-rotation
fields B1 in Table II, though it often extends to larger fields. However,
the thresholds differ between α–β transitions, and may be lower, for
example, for end-state resonances.

3. Relation to fit functions in previous work
Previous work focused on the 0–0 transition with negligible

applied fields.35–37 We can recover the “low-field spin-rotation”
model of Ref. 36 from (70) by setting (ψp)dh = 0, (ψp)qh = 0, and
⟨N⟩→∞. Using the relation ∑μW00

μ,σ−μ =Wσ , where σ = μ + ν, this
recovers the nonlinear shift

Δ2
2 → Δ2

1 = −(
1

2πT
)

2I

∑
σ=−2I

Wσ(1 + r1σ)3ϕ3

1 + (1 + r1σ)2ϕ2 (75)

from Refs. 36 and 37, where ϕ = δA[I]τ/(2h) and
r1 = 2γN/(δA[I]2). The fitting parameters (ψp)hfs = 2πν00(ϕp) and
(ψp)sr = (r1ϕp)[I]. We can recover the original model of Ref. 35 by
additionally setting (ψp)sr = 0. Using the property ∑σWσ = 1, this
recovers the nonlinear shift

Δ2
2 → Δ2

0 = −(
1

2πT
) ϕ3

1 + ϕ2 , (76)

of Refs. 35 and 37. In both of the above cases, this also recovers
the corresponding linear molecular slope sm = (ϕp)/[2π(Tp2)] of all
previous work.35–37,45,46

The models of Refs. 45 and 46 discussed in Sec. V are equiva-
lent to (75). However, those works use an admixing model to modify
the isotopic scaling of the fitting parameters, and additional mod-
ifications to directly or indirectly alter the functional form with
pressure.

Reference 37 models different transitions and the effects of
moderate applied fields using a bound-atom approach. We recover
very nearly the same model by setting (ψp)dh = 0, (ψp)qh = 0, and
⟨N⟩→∞. However, the details and interpretation of the angular
average in (68) are rather different than that of Eq. (4.98) in Ref. 37,
except in the limit of small applied fields. The approach in Ref. 37
may offer an approximate method to extend this work to strong
fields where G is no longer a good quantum number.
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III. EXPERIMENTAL METHODS
The 0–0 resonant frequencies ν of 85Rb in the pure buffer gases

He, N2, Ar, Kr, Xe, and 136Xe were measured using the same laser-
pumped, vapor-cell clock apparatus as was used for the 87Rb data in
He, Ne, N2, Ar, Kr, and Xe previously reported in Ref. 36. Figure 2
sketches this apparatus, and Ref. 37 describes it in additional detail.
To adapt to 85Rb, the appartus used a larger-aperture standard-gain
horn antenna and a high-power amplifier between the function gen-
erator and horn to enhance the signal as needed for some gases,
especially for Xe at high pressures.

The 85Rb and 87Rb data were measured independently using
separate, isotopically enriched vapor cells. Multiple datasets were
measured for each pairing of Rb isotope and pure buffer gas, as
shown in each plot of fitting residuals below. All data used a vapor-
cell temperature of 40.0 ± 0.1 ○C and an applied field of B = 1.0
G along the light direction by default. Typical temperature and
field variations across the cells were estimated to be within 0.2 ○C
and 5 mG.

A. Light-shift suppression
To mitigate systematic error from the light shift (or dynamic

Stark shift), the apparatus used two nested feedback loops: an
inner loop to lock the carrier frequency of frequency-modulated
microwaves to the 0–0 transition, and an outer loop to lock the opti-
cal frequency of the pumping light to produce no light shift of the
0–0 transition. While both feedback loops are engaged, a frequency
counter with 1 Hz precision, referenced to a Rb frequency standard,
sampled the locked carrier to provide ν. The sample standard devi-
ation provided the measurement uncertainty, which increased with
the 0–0 linewidth at higher pressures.

The outer feedback loop used an intensity-modulation method
described in Refs. 35–37, and 66. This method locks the optical fre-
quency to one of two wavelengths near the 795 nm D1 transition
that produce no shift, which vary with the vapor-cell conditions.67

To verify that the light shift was suppressed to within the measure-
ment uncertainty, the neutral-density filter was used to temporarily

FIG. 2. Experimental setup for the measurement of nonlinear pressure shifts. DL,
diode laser; FR, Faraday rotator; PE, pellicle; PO, polarizer; LCW, liquid crystal
wave plate; BS, beam shaper; NDF, neutral density filter; BE beam expander;
I, iris; O, oven; H, horn; HC, Helmholtz coils; L, lens; PD, photodetector; CP,
current preamplifier; LA, lock-in amplifier; PID, proportional-integral-derivative
(PID) controller; FS, frequency synthesizer; FC, frequency counter; FG, function
generator.

adjust the laser intensity by a factor of 2–4 every few steps in pres-
sure. Additionally, datasets were measured and compared for both
choices of zero-shift wavelengths for each pairing of Rb isotope and
buffer gas. Each plot of fitting residuals includes one dataset that
used a different zero-shift wavelength than the other sets, except for
85Rb in N2.

B. Pressure-gauge linearization
Following the 87Rb cell, as well as a 133Cs cell for a different

apparatus,36,37 the 85Rb cell used a dedicated capacitance manome-
ter (MKS Instruments Baratron) to measure the pressure p up to
100 Torr with a precision of roughly ±0.002 Torr and an accuracy
of about 0.25%. Before cell construction, the manometer was veri-
fied to agree with that of the 87Rb cell to within 0.25% across the
100 Torr range. As with the previous cells, it was critical to mitigate
nonlinearity in pressure measurement in order to precisely measure
nonlinear shifts of a few Hz on top of large background, linear shifts.

Figure 3 highlights this pressure-gauge nonlinearity and its
removal for both Rb cells. Each plot shows linear fitting residuals
for buffer gases with little to no expected nonlinearity, which will be
discussed in Sec. IV A. The top row shows example residuals using
the raw pressure pg measured by the manometer gauges. As shown,
there is an apparent nonlinearity in each dataset using the measured
pressures pg .

To remove this apparent nonlinearity, the true pressures p
were estimated from the measured pressures pg with the empirical
formula

p = c1(pg + c2p2
g + c3p3

g), (77)

where the coefficients c2 and c3 correct quadratic and cubic non-
linearities. The coefficient c1 was chosen to preserve the pressure-
measurement accuracy by least-squared minimizing the linear
bias, ∫ 100 Torr

0 (p − pg)2dpg , giving c1 = 7(1 + 75c2 + 6000c3)/[7
+ 42 000c2

2 + 350c2(3 + 20 000c3) + 12 000c3(7 + 25 000c3)].
To use Eq. (77), unique values of the coefficients were deter-

mined for each cell and applied to all of its data. For the 87Rb cell,
as well as a 133Cs cell, these values came from fitting multiple He,
Ne, and N2 datasets using the empirical formula and were reported
previously.36,37 Likewise, for the 85Rb cell, the values came from fit-
ting multiple He and N2 datasets. To mitigate concerns about room
temperature fluctuations, the pressure gauge of the 85Rb cell was held
at 30.0 ○C in a temperature-stabilized enclosure for all but the Ar
data. The best results for the 85Rb cell came from including a cubic
correction.

As Fig. 3 shows in its bottom two rows with multiple He and
N2 datasets, applying the correction of Eq. (77) using the coefficients

TABLE IV. Pressure-gauge linearization coefficients for Eq. (77). The supplementary
material provide plots of these corrections.

c2 × 106 c3 × 107

Cell c1 (Torr−1) (Torr−2) References

85Rb 1.000 46 9.9 ± 1.9 −2.00 ± 0.12 This work
85Rb 1.001 28 −17.1 ± 5.2 0 37, 45, and 46
87Rb 1.002 56 −34.0 ± 2.2 0 This, 36, 37, 45, and 46
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FIG. 3. Pressure-gauge linearization using the 0–0 resonant frequencies ν of 85Rb (left) and 87Rb (right) in He and N2 at 40.0 ○C and B = 1 G. (a) and (b) Linear fitting
residuals of select datasets vs raw pressure-gauge readings pg show an apparent nonlinearity. The zero-pressure intercepts ν0 were not removed to illustrate its typical
variation and to help distinguish datasets. The 87Rb plot also includes Ne data. (c)–(f) The apparent nonlinearities disappear after correcting the pressure values using
Eq. (77) with Table IV. Each plot shows linear fitting residuals of multiple datasets of each pair of Rb isotope and pure buffer gas after this correction. Tables VI and V
summarize the fitting results.

in Table IV to linearize the pressure gauges of each cell eliminated
the apparent nonlinearities, making the remaining nonlinearities
comparable to measurement uncertainties across the pressure range.

IV. RESULTS
This section presents the analysis of the measured 0–0 fre-

quencies of 85Rb and 87Rb using the fitting function (66) with the
nonlinear shift Δ2ν of (70) and molecular slope sm of (74), assum-
ing negligible applied field. Equations (41), (44), (48), (53) and (59)

give the molecular phase–shift parameters in terms of pressure- and
isotope-independent fitting parameters. Tables V and VI summarize
the fitting results. For comparison, the supplementary material sum-
marizes the results of separate analysis of the 87Rb data in previous
and of the 85Rb data in unpublished work.36,37

A. Helium and nitrogen
The ability of the apparatus to accurately measure nonlinear

pressure shifts was explored using He and N2 gases, as well as Ne for
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TABLE V. Fit parameters for the linear and nonlinear pressure shifts of 85Rb and 87Rb at 40.0 ○C and B = 1 G. Fitting used the function (66) with the nonlinear shift Δ2ν of
(70), molecular slope sm of (74), and the atomic parameters in Table I, as described in the text. The magnitudes of (ψp)sr were set to the values in Table II. Table VI provides
equivalent binary sb and molecular sm slopes for these parameters.

σb × 109 ⟨Tp2⟩ (ψp)hfs (ψp)sr (ψp)dh (ψp)qh

Gas (Torr−1) (ms Torr2) (ps Torr−1) (rad Torr) (rad Torr) (rad Torr barn−1) ⟨N⟩

He 104.39 ± 0.26 0 0 0 0 0 ∞
N2 75.80 ± 0.19 0 0 0 0 0 ∞
Ar 7.4 ± 0.9 2.1 ± 3.5 −0.8 ± 1.5 ±1.016a −0.6 ± 0.4 0 ∞
Kr −81.65 ± 0.22 69 ± 15 16 ± 9 9.61 −2.8 ± 0.6 0 8.6 ± 3.1
Xe −169.0 ± 0.4 52.5 ± 1.6 −289 ± 10 −31.9 −10.2 ± 1.5 0 8.2 ± 0.6
aThe sign of the spin-rotation parameter for Ar had too little of an effect on the fit parameters and results, so was not determined. Fitting used a negative sign.

TABLE VI. Fit parameters for the binary and molecular linear pressure shift slopes
in Eq. (66) of 85Rb and 87Rb at 40.0 ○C and B = 1 G. All values follow from Table V
using (66) and (74).

sb for 85Rb sb for 87Rb sm for 85Rb sm for 87Rb
Gas (Hz Torr−1) (Hz Torr−1) (Hz Torr−1) (Hz Torr−1)

He 316.9 ± 0.8 713.5 ± 1.8 0 0
N2 230.1 ± 0.6 518.0 ± 1.3 0 0
Ar −22.0 ± 3.0 −51.0 ± 6.0 −1 ± 3 −3 ± 7
Kr −247.9 ± 0.7 −558.1 ± 1.5 −1.7 ± 0.9 0.08 ± 1.03
Xe −513.0 ± 1.2 −1155.0 ± 3.0 −3.6 ± 1.3 −28 ± 2

87Rb, which span a range of linear-shift slopes comparable to those
of Ar, Kr, and Xe, as shown in Tables V and VI. Figure 3 shows the
results for He and N2. After correcting for nonlinearity in pressure
measurement as described above, the pressure shifts of both Rb iso-
topes appear linear for He and N2, as expected from previous work.
That is, though He, as well as Ne, are known to form van der Waals
molecules with Rb, this and previous work have been unable to
detect any definitive resulting nonlinearity. Likewise, though N2 may
form molecules, and instantaneous RbN2 molecules during two-
body collisions are known to be important in some applications,68

this and previous work have been unable to detect any definitive
resulting nonlinearity. The linear fitting residuals in the middle and
bottom rows of the figure suggest that the limit of experimental accu-
racy for detecting nonlinearity is roughly on the order of a few Hz
across the pressure range, with an expected sensitivity to the total
linear-shift slope s. The remaining suggestive nonlinearities likely
represent residual systematic error.

Fitting of the He and N2 data used the fit function (66)
and ignored any potential contributions from molecules, giving
f (p) = ν0 + sbp with sb = ν00σb. Initial analysis fitted the data for
each isotope separately. A pairwise comparison of the fitted slopes
sb between isotopes agreed with the expected isotopic scaling to
within a maximum error of ±0.16%, suggesting that the rela-
tive inaccuracy of the two Rb cell pressure gauges varied within
±0.16% across the datasets, which is slightly better than the direct
manometer test results reported above, perhaps from linearization
with (77).

Final values for the linear pressure shifts in Tables V and VI
came from joint fitting of pairs of 85Rb and 87Rb datasets. Multiple
pairs were fitted for each gas, as enumerated in Fig. 3. To reduce
the influence of the ±0.16% relative inaccuracy of pressure mea-
surement for each Rb isotope, this inaccuracy was fitted directly
with a parameter ε by differentially rescaling the pressure values as
p→ p

√
1 + ε for one isotope and p→ p/

√
1 + ε for the other (for

He and N2 data only). The reported values for σb and sb then came
from averaging results. The reported uncertainties are the root sum
of squares (RSS) of the following: the fitted slope uncertainties of
each pair (which includes measurement uncertainties), the standard
error of the mean (SEM) of the fitted slopes (to capture the scat-
ter between pairs), the common-mode influence of the expected
±0.25% pressure-measurement inaccuracy, and the propagation of
the uncertainties of the gauge linearization coefficients in Table IV.
The joint-fitting results agreed closely with those from analyzing
isotopes separately.

As reported before, there are curious, small anomalous fre-
quency shifts at very low pressures, below about 1 Torr, with some
gases other than Xe. In Fig. 3, these are apparent for 85Rb in He
and 87Rb in N2. These shifts seem to be a systematic effect from
poor signal-to-noise ratios, though more investigation is required to
confirm.

B. Xenon
The data for Rb in Xe is challenging to analyze because signif-

icant nonlinearity remains even at 100 Torr for both Rb isotopes,
making it difficult to separate the linear and nonlinear shifts. Even
with this limitation, the data for 85Rb in Xe challenges the models
of previous work, because the shape of its nonlinearity is incompat-
ible with that allowed by previous theory, which describes all other
cases well, including 87Rb in Xe. Figure 1 shows this visually with
a comparison of the final fitted nonlinearities for both Rb isotopes
reported below. Additionally, Ref. 37 demonstrated this by fitting
with previous models (see supplementary material).

To probe this discrepancy, additional 85Rb data was collected
with 136Xe and at B = 0.25 G. To the limit of experimental accu-
racy, the nonlinearities of 85Rb in natural Xe or in spinless 136Xe
were the same. This suggests that the nuclear spin of the noble
gas does not contribute significantly to nonlinear pressure shifts.
Additionally, the relative change in mass between Xe and 136Xe
is comparable to that between 85Rb and 87Rb, suggesting that this
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difference, and any potential impact to rovibrational distributions, is
not significant. Likewise, no difference was observed between B = 1
and 0.25 G, suggesting the Zeeman interaction is not responsible for
this discrepancy.

The model derived here suggests that this discrepancy comes
from the neglect of additional spin interactions in the molecules,
because the model successfully captures the shape of the nonlinear-
ity of 85Rb in Xe. As Fig. 1 shows, the model succeeds because these
interactions allow zero crossings and other freedom in the shape.
However, the model can fit the nonlinearity by including either or
both of the dipolar- and quadrupolar-hyperfine interactions. That is,
these two interactions can produce similar nonlinearities, so the data
is unable to uniquely separate their effects without additional con-
straints. Therefore, direct analysis of the 85Rb in Xe data alone gives
highly non-unique results (i.e., no optimal set of fitted parameters),
without further knowledge from theory.

To test the model and make the results in Tables V and VI
as unique as possible, the fitting was constrained as follows:
First, the values came from jointly fitting pairs of 85Rb and 87Rb
datasets with shared parameters. Figure 4 shows the fitting resid-
uals for the three pairs used, which included one dataset for 85Rb
in 136Xe. Second, this fitting included not only the nonlinear shift,
but also the dominant linear shift. As discussed in Sec. IV E, for

FIG. 4. Xenon: Measured 0–0 resonant frequencies ν of 85Rb and 87Rb in Xe at
40.0 ○C and B = 1 G. Fig. 1 shows fitted nonlinear shiftsΔ2ν for an example pair of
85Rb and 87Rb datasets. (a,b) Fitting residuals for three pairs of datasets giving the
parameters in Tables V and VI. As the top plot shows, no difference was observed
between 85Rb with natural Xe and spinless 136Xe.

Xe this constrained the sign of the spin-rotation parameter and
required a finite value of ⟨N⟩. Third, as in previous work, the
magnitude of the spin-rotation parameter was fixed to its value
inferred from relaxation measurements in Table II, because the non-
linearity does not precisely determine its value. Fourth, only one
additional spin-interaction was included, the dipolar interaction.
Exploring the dipolar and quadrupolar interactions separately, the
dipolar interaction was better able to simultaneously fit the data
for both Rb isotopes. Including both interactions provided little
benefit, so the quadrupolar interaction was neglected in the final
results.

All together, the linear and nonlinear shifts of both Rb iso-
topes in Xe were fitted with only the five free parameters shown
in Table V, as well as two zero-pressure intercepts ν0. Similar to
the He and N2 data, the reported uncertainties for each parameter
are the RSS of the following: the fitted uncertainties for each pair
(which includes measurement uncertainty); the SEM of the fitted
slopes (to capture scatter between pairs); the differential-mode influ-
ence of±0.16% error between gauges (to capture inaccuracy between
cell pressure gauges); the common-mode influence of the expected
±0.25% pressure-measurement inaccuracy; and the propagation of
the uncertainties of the gauge linearization coefficients in Table IV.
Together, the last three sources of uncertainty strongly suggest that
the results are robust against systematic errors within and between
the two pressure gauges. Unfortunately, the zero-pressure intercepts
ν0 varied at the level of a few tens of Hz between datasets, as the top
row of Fig. 3 shows, so could not be fixed to known values to improve
the fitting.

The results in Table V provide a minimal description of the
experimental data. Figures 1 and 4 show that the fitting captured
the data well. The remaining residuals are likely due to limitations
in the apparatus and the model, such as neglecting rovibrational
distributions. Separate fitting of each Rb isotope only provided
modest improvements in capturing the nonlinear shapes. Neverthe-
less, without further supporting knowledge from theory, the fitted
parameter results should only be considered empirical values.

C. Krypton
Unlike for Xe, the data for Kr does appear to capture the

majority of the nonlinearities below 100 Torr. Additionally, previ-
ous models do successfully capture the observed nonlinearity for
85Rb in Kr, as reported in Ref. 37 (see supplementary material).
The opportunity for Kr is then to see if the model derived here can
simultaneously fit the data for both Rb isotopes, which the previous
models could not do.

Using the same approach and constraints as for Xe worked well
for Kr. Tables V and VI report the results, which provide a min-
imal description of the experimental data. Of the nonlinear gases,
Kr was the most sensitive to pressure measurement errors, because
of it relatively large linear shifts and small nonlinearities. However,
as with Xe, the fitting strongly suggest that the results are robust
against errors within and between the two pressure gauges, given the
uncertainties reported. Also, as with Xe, no difference was observed
between 85Rb data at B = 1 and 0.25 G, supporting the use of the
zero-field approximation during fitting.

Figure 5 shows that the model captures the data satisfactorily.
However, separate fitting of the nonlinearity for 85Rb in Ref. 37
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FIG. 5. Krypton: Measured 0–0 resonant frequencies ν of 85Rb and 87Rb in Kr at
40.0 ○C and B = 1 G. (a) and (b) Fitted nonlinear shifts Δ2ν for an example pair
of 85Rb and 87Rb datasets. (c) and (d) Fitting residuals for three pairs of datasets
giving the parameters in Tables V and VI.

(see supplementary material) provides some improvement, because
of the relatively small size of the nonlinearity and the inability to
constrain the intercepts ν0. Similar improvement is possible with the
model derived here if the linear shifts were not fitted with shared
parameters, but this would make the results highly non-unique. Note
that, although the fitted curve for 87Rb in Kr appears similar to those
of previous models, that curve has a zero crossing at low pressure, as
indicated by the dashed line in Fig. 5.

D. Argon
As with Kr, the data for Ar does appear to capture the nonlin-

earities below 100 Torr. However, the the shape of the nonlinearity
for 85Rb in Ar is ambiguous, because an inflection point was not cap-
tured above 1 Torr, complicating fitting. As a result, though previous
models can fit this nonlinearity well, as reported in Ref. 37, they do
so non uniquely. The opportunity for Ar is then the same as that
for Kr, to see if the model derived here can fit the data for both Rb
isotopes, which the previous models could not do.

The same approach as that for Kr and Xe worked well for Ar.
Tables V and VI report the results, which again provide a mini-
mal description of the experimental data. However, as discussed in
Sec. IV E, little to no linear molecular shift was inferred for Ar, so the
sign of the spin-rotation parameter could not be determined. Like-
wise, the nonlinearities seemed insensitive to this sign, though they
required a finite value for the parameter, which was again fixed to its
value in Table II. To proceed with fitting, a negative sign was arbi-
trarily chosen for the spin-rotation parameter, and the parameter
⟨N⟩ was removed by setting its value to infinity. Compared to Kr
and Xe, Ar was the least sensitive to pressure-measurement errors,
because it has the smallest linear shifts. This is important because
the 85Rb pressure gauge was not temperature stabilized for the
Ar data.

Figure 6 shows that the model captures the data satisfacto-
rily, given the incomplete capture of the 85Rb nonlinearity. Though
the fitted curves resemble those of previous models, they both have
zero crossings at low pressure, as indicated by the dashed lines in
Fig. 6. Parameters from separate-isotope fits are provided in the
supplementary material.

E. Spin-rotation signs using linear shifts
The effective sign of the spin-rotation interaction (46) is not

important to relaxation, so has received little to no attention for
RbAr, RbKr, and RbXe molecules. Unlike previous models, the
model derived here predicts that this sign is particularly important to
the linear shifts from molecules. To see this, consider measurements
of the total linear, limiting slopes s for both Rb isotopes and the
same gas. Using this data, the fitting function (66) with the molecu-
lar slope (74) gives two equations with two unknowns, σb and (ψp)sr,
if the second-order contributions from the dipolar and quadrupolar
interactions are neglected. Solving gives the parameter

(ψp)sr ≈ 6π⟨N⟩⟨Tp2⟩( s87ν85
00 − s85ν87

00

3ν87
00 − 2ν85

00
), (78)

where superscripts indicate isotope-dependent values. There-
fore, the sign sgn [(ψp)sr] ≈ sgn (s87ν85

00 − s85ν87
00) follows from the
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FIG. 6. Argon: Measured 0–0 resonant frequencies ν of 85Rb and 87Rb in Ar at
40.0 ○C and B = 1 G. (a) and (b) Fitted nonlinear shifts Δ2ν for an example pair
of 85Rb and 87Rb datasets. (c) and (d) Fitting residuals for three pairs of datasets
giving the parameters in Tables V and VI.

inferred sign of any observed molecular shifts within the dominant,
total linear shift slopes s.

The relation (78) explains why the fitting results above were
sensitive to this sign. Before fitting, previous results were used to
estimate the signs, which predicted a negative sign for Xe with good
confidence, a positive sign for Kr with reasonable confidence, but no
prediction for Ar (and likewise a null result for He and N2) given
the ±0.16% relative pressure-gauge inaccuracy. The fitting results
above support these predictions. In particular, no solution could be
found for Xe or for Kr with the other choice of sign, if both the
linear and nonlinear shifts were fitted with shared parameters. How-
ever, the positive sign for RbKr disagrees with the theory prediction
of Ref. 33.

V. DISCUSSION
The results above show that the semi-empirical model derived

in Sec. II provides a minimalist summary of all the data. For pure Ar,
Kr, and Xe, which each showed a clear nonlinearity, the model suc-
cessfully fit both the linear and nonlinear shifts of each Rb isotope
using shared parameters. Attempts to use the models of previous
work, excluding the modifications of Camparo45,46 discussed below,
failed to do this, even if the linear shifts were allowed to have separate
parameters.

The success of the new model results from two changes in its
derivation, which otherwise closely resembles that of all previous
models. The first change was to include the next two additional
interactions expected to contribute, the dipolar- and quadrupolar
hyperfine interactions. As discussed above, this was motivated in
particular by the lack of any observed difference between natural Xe
and spinless 136Xe, which suggested that additional spin interactions
in the molecules were the source of previous discrepancy. Though
either of the two new interactions could fit the previously incompat-
ible shape of 85Rb in Xe, overall the dipolar interaction provided the
best fit to the data of all gases. Additionally, the values required for
the fitting parameter of the dipolar interaction were comparable to
previous estimates, while those of the quadrupolar interaction were
larger than expected (see supplementary material).

The second change was to treat rotation quantum mechanically
instead of semi-classically. This allowed the model to successfully fit
the large linear shifts of Kr and Xe with shared parameters, because
it predicted a spin-rotation contribution to the linear shift. While the
fits are still successful without this, their results are less unique, and
there would appear to be a slight disagreement between the linear
shifts of the Rb isotopes beyond that expected from pressure-gauge
errors.

These changes allowed the model to fit the linear and nonlinear
shifts of both Rb isotopes with only five free parameters for Kr and
Xe, and four free parameter for Ar, in addition to two zero-pressure
intercepts. The fits capture the nonlinearities well, especially for
Xe, though separate-isotope fits empirically summarize those for Ar
and Kr slightly better (see supplementary material). As in previous
work, the single-state approximation seems adequate, though the
small shifts for Ar raise concerns about competing contributions.
The magnitudes of the spin-rotation interaction from relaxation
measurements still work well for these shifts. However, the fitted
formation rates remain only comparable to those from relaxation
measurements, as expected from Sec. II F.
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Together, the model and results make several testable predic-
tions for future exploration. The first is the set of fitting results
in Table V, which provides quantitative values to test, indicates
an important contribution from the dipolar-hyperfine interaction
in these molecules, and suggest a negligible contribution from the
quadrupolar interaction. Interestingly, the fitted values of ⟨N⟩ for
RbXe and RbKr are much lower than those in Table II from relax-
ation measurements. Further investigation could explore if low
values of N dominate the shift, or arise from the single-
rovibrational-state approximation, or are artifacts from fitting the
linear shifts using the values of ∣ψp∣sr from Table II. The second is
the correction to the spin-rotation interaction energies, their con-
tribution to the linear molecular shift, and the resulting inferred
signs for this interaction for Xe and for Kr, the last of which
curiously disagrees with previous theory. The third is the varia-
tion of the nonlinear shape with hyperfine transition, which differs
from that in previous work. This variation seems largest between
end resonances and the 0–0 transition, and should be observable
with Xe (see supplementary material). The fourth is the variation
of the shifts with applied magnetic field, which again differs from
that in previous work. For low fields, the 0–0 transition shows little
change until roughly 10 G for Ar and a few tens of G for Kr and Xe,
which supports fitting with the negligible-field model. Other tran-
sitions, in particular, end resonances, show significant changes to
the nonlinearity by roughly 10 G, and should be observable with all
nonlinear gases (see supplementary material). Generally, the effect
is to increase the size of the nonlinearity, though it can reduce it
initially. In particular, the new model predicts that the molecules
alter the linear Zeeman shift of some transitions through the linear
molecular shift sm(B) of (69), which might be as large as roughly 36
Hz/(Torr G) for Ar. The fifth is the assumption that the nuclear spin
of the noble gas and its spin-polarization do not matter, continued
from previous work and supported here by comparing unpolarized
natural Xe with spinless 136Xe.

Future theoretical and experimental work could test these
predictions. The experimental approach used here could be read-
ily improved to better constrain the zero-pressure interecepts, to
reach lower and higher pressures, to probe other transitions and
their field dependence, or, more generally, to probe other choices
of alkali-metal and buffer-gas atoms, beyond the cases of Rb and
Cs explored to date. As reported before,36,37 there are curious
anomalous frequency shifts at very low pressures, below about
1 Torr, with gases other than Xe. While they seem to be a sys-
tematic effect from poor signal-to-noise ratios, it is possible they
could be from the nonlinearities, for example, in Kr in Fig. 5. The
apparatus remains unable to detect nonlinearities from RbHe or
RbNe molecules, which are expected in the cells, or potential RbN2
molecules.

Finally, two recent studies by Camparo provide an alternate
analysis of the 85Rb and 87Rb data in Xe.45,46 Both works use
the previous model of Refs. 36 and 37, but they modify the iso-
topic scaling of its hyperfine-shift parameter with an admixing
approach. This approach approximates the molecular-spin eigen-
states by including hyperfine perturbations from excited Rb states,
and its derivation assumes a different hyperfine propensity rule
than that of Sec. II C. However, the fitting functions have the same
form with pressure as the previous model. Therefore, to accommo-
date the incompatible shape of the 85Rb nonlinearity in Xe, each

work proposes an intriguing approach to modify the functional
form.

The first work45 directly modifies the form by considering a
higher-order pressure dependence in the molecular lifetime τ, such
that the breakup-rate quantity 1/(τp) is no longer pressure indepen-
dent, but instead varies between low- and high-pressure limits across
the experimental range. However, while slight modification of the
chemical dynamics is expected, for example, from corrections to the
ideal gas law, the size of the modification needed to fit the data is
roughly a factor of 2 for 85Rb, so seems implausible. That is, the col-
lisions that form or break the molecules are expected to be isolated
events with little knowledge of the surrounding pressure, within the
100 Torr measurement range.

The second work46 indirectly modifies the form by adding
quadratic and cubic terms to the fitting function to remove a sus-
pected error known as the “position” shift. This error comes from
a variation of the 0–0 frequency with position inside the cell, which
always exists at some level because of light shifts, temperature gra-
dients, magnetic-field gradients, wall shifts, and other effects.69–72

This variation and the way the apparatus samples it to select a sin-
gle frequency likely vary with pressure, so this error may imitate a
pressure shift. (Its related variation with microwave power is some-
times called a power shift.) To fit the data, this second work removed
suspected positional shifts up to several kHz, with resulting non-
linearities on the order of 1 kHz (see Fig. S3 in the supplementary
material), similar to or larger than the inferred nonlinear shifts
from molecules. The rather large size of these positional-shift non-
linearities seem implausible, because if they were present, then
similar errors should have been observed with the other buffer gases.
Instead, the data for He and N2 shown in Fig. 3 (as well as Ne for
87Rb in Refs. 36 and 37) suggest any positional-shift nonlinearity is
on the order of several Hz. Likewise, the analysis of linear shifts for
all gases and the observed size of the nonlinearities for Ar and Kr in
Figs. 5 and 6 do not support such a large effect. Care was taken to
reduce potential sources for the positional shift in the apparatus. In
addition to light-shift suppression described above, estimates of typ-
ical temperature and field gradients given above do not support such
a large effect. However, wall shifts from collisions with the uncoated
glass cell are indeed possible though not expected to support such a
large effect either.72

Last, both works focused exclusively on the Xe data in
the dataset.73 Therefore, it remains to be seen whether either
approach to modify the form extends to both Ar and Kr and to
a detailed analysis of the linear shifts of all gases, including He
and N2.

VI. CONCLUSION
In summary, measurements observed nonlinear pressure shifts

for 85Rb in pure Ar, Kr, and Xe buffer gas, but not for He and N2.
These shifts revealed discrepancies with their previous modeling,
in particular for 85Rb in Xe, developed with 87Rb and 133Cs data.
Improved modeling resolved the majority of these discrepancies,
and successfully fit linear and nonlinear shift data for both 85Rb and
87Rb in these gases with shared isotope-independent parameters.
The results demonstrate the importance of the dipolar-hyperfine
interaction to nonlinear pressure shifts and therefore to widely
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used atomic frequency standards and related atomic devices. Fur-
ther precision measurement of such nonlinear shifts would improve
the understanding of van der Waals molecules and their spin
interactions.

SUPPLEMENTARY MATERIAL

The supplementary material provides additional detail on aver-
aging over the direction of rotation, estimates of the dipolar-
and quadrupolar-hyperfine interaction parameters, a plot of the
pressure-gauge linearization corrections, a plot of the positional
shifts proposed by Camparo,46 additional fitting parameters for fig-
ures above and from previous work, and reproductions of figures
showing results from previous work.
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